Distributed data management with the
rule-based language: Webdamlog
Ph.D. defense

Emilien ANTOINE
Supervisor: Serge ABITEBOUL
Webdam Inria ENS-Cachan Université de Paris Sud

December 5th, 2013
- S BRS
informatics #” mathematics W P S

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 1/43

0 Context and problematic
e Webdamlog

e System

° Proof of concept

e Conclusion

Emilien Antoine (Inria)

a language for distributed knowledge

implementation of a Webdamlog engine

application and feasibility of Webdamlog

Ph.D. defense

Focus of this thesis

Allow the Web users to manage their personal data
in place

Two main aspects:
@ personal data are distributed

@ Web users want to automate tasks and they are not
programmers

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 3/43

Problem overview

We are interested in all kinds of data of a Web user
personal data photos, movies, music, emails
social data annotations, recommendations, social links
localization bookmarks, phone numbers
privacy logins/passwords, ssh keys

Data of users are heterogeneous by nature
Data are distributed on several

devices laptops, smartphones, Internet boxes, cloud-storage, ...
systems Facebook, Picasa, Gmall, ...

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 4/43

Typical distribution of knowledge

Internet

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 5/43

Example of distributed task on personal data
Alice has

@ a blog on Wordpress.com to publish movie reviews
@ a Facebook and Gmail account to talk to friends
@ a Dropbox account to share files

she wishes to advertise friends about new reviews and share the
movie

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

6/43

ifttt.com

Example of distributed task on personal data
Alice has
@ a blog on Wordpress.com to publish movie reviews
@ a Facebook and Gmail account to talk to friends
@ a Dropbox account to share files

she wishes to advertise friends about new reviews and share the
movie
Cumbersome tasks for humans

@ remember each login/password
@ sign on each website
@ use each GUI

Solutions

@ hope that a system, e.g. Facebook, provides an appropriate
wrapper

@ try to specify it with a system such as ifttt. com “if this then that”

@ if everything fails, write a script (only for hackers)

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

6/43

ifttt.com

The Web as a distributed knowledge base

Give to Alice a system that
@ use the Web service to manage her knowledge
@ allow her to specify tasks
@ hide the network and protocol issues

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

7143

Principles underlying the approach

@ Knowledge and computation are distributed on several peers
@ These peers are autonomous (P2P)
@ They are willing to collaborate (delegation)

@ Knowledge from heterogeneous systems is integrated using
“wrappers” in a mediation style

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 8/43

e Webdamlog a language for distributed knowledge
@ Datalog
@ Webdamlog

Emilien Antoine (Inria) Ph.D. defense

Representing knowledge in datalog

Facts in relations:

Friend Picture Location
Alice Bob pict Alice pict Grenoble
Alice Charlie pic2 Bob pic2 Nantes

Bob Charlie pic3 Charlie pic3 Rennes

Rules:

Where ($someone,$loc) :- Picture($pic, $someone), Location($pic,$loc)

head atom atom

body

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

10/43

Representing knowledge in datalog

In datalog relations are either:
@ extensional: Friend,Picture,Location

» a list of facts stored in database
» only in the body of datalog rules

@ intensional: Where

» a list of facts defined by rules ie. a view
» appear at least once in the head of a rule

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 11/43

Datalog supports recursion
Recursion needed in graphs e.g. network path, social link

FoF($x,8y) :- Friend($x,$y)
FoF($x,8y) :- Friend($x,%$z), FoF($z,%y)

Already exists in SQL but ugly

WITH RECURSIVE FoF(From, To) AS
(

SELECT From, To, FROM Friend
UNION

SELECT Friend.From, FoF.End
FROM Friend, FoF

WHERE Friend.To = FoF.From);

N o o A~ W N =

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 12/43

Some datalog extensions we use

update extensional relations in the head of rules:
Friend($y,$x) :- Friend($x,$y)

negation in the body of rules
Picture($x,Charlie) :- Picture($x,Alice), —Picture($x,Bob)

distributed relations are distributed over the network
Picture@Bob($x,Bob) :- Picture@Alice ($x,Bob)

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 13/43

Webdamlog

Schema

(m, E, l,0) where
@ 7 is a possibly infinite set of peer names
@ E is a set of extensional relations of the form m@p for p € 7
@ /is a set of intensional relations of the form m@p for p € =
@ o(m@p) typing function, arity and sorts of m@p fields

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

14/43

Webdamlog

Facts

mép(ay, ..., an), where
@ mis a relation name
@ pisapeernamein

@ n=o0(m@p) and ay, ..., ap are data values
data values includes the relations and peer names
Extensional Intensional

Where@Alice(Alice,Grenoble)
Where@Alice (Bob,Nantes)
Where@Alice(Charlie,Rennes)

Friend@Alice (Alice,Bob)
Friend@Alice(Alice,Charlie)
Friend@Alice (Bob,Charlie)
Picture@Alice(picl,Alice)

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 15/43

Webdamlog
Rules
SR 1@$Phs1($Unyq) - (m)$R1@3$P4(3U5), ..., (-)$SRa@$Pn($Un)
@ $R; are relation terms
@ $P; are peer terms
@ $U; are tuples of terms
@ read body from left to right

Safety condition
@ $R, .1 $P,. 1 must appear positively bound in the body
@ $P; must be previously bound
@ each variables must appear in positive atom before being used

v

Rules reside at peers:
[at Alice]
Picture@Alice($x,$y) :- Friend@Alice(Alice, $friend),
Picture@ $friend ($x,$y)
Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 16/43

Webdamlog
Rules
$Rn+1@3$Pni1($Unr1) - (4)$R1@$P1($U1), ..., (-)$R,@3$P1($U,)
@ $R; are relation terms possibly variables
@ $P; are peer terms possibly variables
@ $U; are tuples of terms
@ read body from left to right

Safety condition
@ $R,.1 $P, 1 must appear positively bound|in the body
@ $P; must be previously bound
@ each variables must appear in positive atom before being used

Rules reside at peers: /
[at Alice]
Picture@Alice($x,$y) :- Friend@Alice(Alice, $friend),
Picture@ $friend ($x,$y)
Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 16/43

v

Particularity of Webdamlog rules

[at p]
r0©p0 (%) - r1©P1 (ﬂ)) r2©P2 (X_Z) s eee :rn©Pn (%)

Semantic depending on 3 criteria
@ p1,...,pn = p, the rule is called local
@ head ro@pg (Xp) is intensional or extensional
@ head rg@pg (Xp) is local or not (pg = p or not)

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

17 /43

Local rules with local intensional head

Extensional: Friend@Alice: (Alice,Bob),(Alice,Charlie),(Bob,Charlie)
Intensional: FoF@Alice

[at Alice]
FoF@Alice($x,$y) : -Friend@Alice ($x,$y)

FoF@Alice($x,$y) :- Friend@Alice($x,$z), FoFQ@Alice($z,$y)

FoF will contain the transitive closure of Friend:
(Alice,Bob), (Alice,Charlie), (Bob,Charlie), (Alice,Charlie)

Intuition
This is standard datalog evaluation J

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 18/43

Local rules with local extensional head

Extensional: Friend@Alice
Step 0: (Alice,Bob),(Alice,Charlie),(Bob,Charlie)

[at Alice]
Friend@Alice($y,$x) :-Friend@Alice($x,$y)

@ Step 1: (Bob,Alice),(Charlie,Alice),(Charlie,Bob)
@ Step 2: (Alice,Bob),(Alice,Charlie),(Bob,Charlie)

Intuition
Database updates

Remarks:
@ by default extensional facts are consumed
@ unless we declare the relation as persistent

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

19/43

Local rules with non-local extensional head

Extensional: Today@Alice (december 5)
Extensional: Event@Alice(birthday,december 5,SMS,Bob-phone)

[at Alice]
$r@$p (Happy birthday):-Today@Alice($date),
Event@Alice(birthday,$date,$r,$p)

Produce SMS@Bob-phone (Happy birthday)

Intuition
Messaging between peers J

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 20/43

Local rules with non-local intensional head

Extensional: Friend@Alice
Intensional: Contact@Bob

[at Alice]
Contact@Bob($x,$y) - Friend@Alice ($x,$y)

Bob gets a view on Alice’s friends

Intuition
External view definition J

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 21/43

Non-local rules: delegation

The main novelty of Webdamlog

Extensional: Friend@Alice: (Alice,Bob),(Alice,Charlie),(Bob,Charlie)

[at Alice]
Picture@Alice($pic,Alice):-Friend@Alice(Alice,$f),
Picture@$f ($pic,Alice)

This will install two rules:

[at Bob] Picture@Alice($pic,Alice):-Picture@Bob($pic,Alice)
[at Charlie] Picture@Alice($pic,Alice):-Picture@Charlie($pic,Alice)

Remark

If Friend@Alice(Alice,Bob) no longer holds the delegation is
uninstalled

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 22/43

Non-local rules: delegation 2

The main novelty of Webdamlog

Intuition

@ Possible to ask another peer to perform some tasks for you
(distributed computation)

@ Possible to exchange knowledge between peers

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 23/43

Webdamlog semantic

State

(I,F,T)
@ /(p) the local state of p is a finite set of extensional facts
@ (p) is the finite set of rules at p
e I'(p,q) (p # q) is the set of rules that p delegated to q

State transition
Choose some peer p randomly — asynchronously

Compute the transition: (I, To, To) — (f,T1,T1) = (b, T2,T2) — ...

@ the database updates at p
@ the messages sent to the other peers
@ the delegations of rules to other peers
Fair sequence: each peer is selected infinitely often

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

24/43

Webdamlog summary

Webdamlog is datalog with novel extensions
@ variables in relation and peer names
@ delegation

both imply installing rules at run-time

Results:

o formal definition of Webdamlog
@ expressivity results:

» the model with delegation is more general, unless all peers and
programs are known in advance

@ convergence is very hard to achieve because of asynchronicity

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 25/43

e System implementation of a Webdamlog engine
@ Webdamlog evaluation
@ Deletions in Webdamlog

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 26/43

Implementation on top of Bud

Bud [UC Berkeley] is a distributed datalog engine with updates; it
supports

@ local rules with local extensional head (semi-naive)
@ local rules with non-local extensional head (semi-naive)
Bud does not support
@ negation
@ intensional relation optimizations (query sub-query, magic sets)

Bud neither any other engine implements requirements for
Webdamlog

@ variables in relation and peer names
@ delegation
@ installing rules at run-time

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 27/43

Semi-naive

Naive evaluation leads to redundant computation

Edge:

(1,2),(2,3),(3,4), (4,5

Path($x,$y) : -Edge ($x,$y)

Path($x,8$y) : -Edge ($x,$z) ,Path($z, $y)
Path(1)° =0
Path(l)' =Path(/)° U {Path(1,2), Path(2,3), Path(3,4), Path(4,5)}
Path(1)? =Path(l)" U {Path(1,3), Path(2,4), Path(3,5)}
Path(1)® =Path(/)?> U {Path(1,4), Path(2,5)}
Path(1)* =Path(/)® U {Path(1,5)}
Path(1)® =Path(/)*

A new facts since previous step

Semi-naive use delta of previous step to compute the current step

Path® ($x,$y) : -Edge ($x,

Emilien Antoine (Inria)

), APath =" (32, $y)

Ph.D. defense December 5th, 2013 28/43

Webdamlog engine run

Run a Webdamlog stage (/,I,T) — (/,T’,T’') in three steps

@ inputs are collected and a new state is defined
» insert/delete Webdamlog facts and rules
» update deltas of relations
» compile the Webdamlog program into a Bud program
@ semi-naive evaluation: monotonic Bud program with a fixed set
of local rules run to fixpoint
© output messages and delegations are collected and sent to other
peers for next stage

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 29/43

Management of variables

[at p]
Fact: ri@p(relname,peername)

Rule: rg@p(Xo) - H@p($x,3y), $x@p(X7),r.@3$y(X2)
—— —
head static dynamic

Stage i:

ye .
J/

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

30/43

Management of variables
[at p]

Fact: ri@p(relname,peername)
Rule: ro@p(Xo) - r1@p($x,8y), $x@p(x7),r,@%$y(X2)
— ~~

ye .
J/

head static dynamic
Stage i:
step 1 install at p: i@p($x,%y) - ri@p($x,%y)
A
Static

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

30/43

Management of variables
[at p]

Fact: ri@p(relname,peername)
Rule: ro@p(Xo) - ri@p($x,3y), $x@p(x7),r.@3%y(X2)
— ~~

ye .
J/

head static dynamic
Stage i:
step 1 install at p: i@p($x,%y) - ri@p($x,%y)
A
Static

step 2 semi-naive evaluation evaluate i@p

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

30/43

Management of variables

[at p]
Fact: ri@p(relname,peername)

Rule: ro@p(Xo) :- r1@p($x,%y), $x@p(X7),r,@%$y(X2),- - -
— ~~

head static dynamic
Stage i:
step 1 install at p: i@p($x,%y) - ri@p($x,%y)
N
Static

step 2 semi-naive evaluation evaluate i@p

step3 FOR EACH fact F(vy,vy) IN i@p
send new rule: head :- dynamic
with variables bounded by F(vy,v)

rO@p(TO) - Vx@p(ﬁ)yrz@vy()TZ): s
——

head dynamic

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 30/43

Management of variables

[at p]
Fact: ry@p(relname,peername)

Rule: ro@p(Xo) :- r1@p($x,%y), $x@p(X7),r,@%$y(X2),- - -
— ~~

head static dynamic
Stage i:
step 1 install at p: i@p($x,%y) - ri@p($x,%y)
N
Static

step 2 semi-naive evaluation evaluate i@p

step3 FOR EACH fact F(vy,vy) IN i@p
send new rule: head :- dynamic
with variables bounded by F(vy,v)

rO@p(TO) - Vx@p(ﬁ)yrz@vy()@)a s
——

head dynamic

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 30/43

Management of variables

[at p]
Fact: ri@p(relname,peername)

Rule: ro@p(Xo) :- r1@p($x,%y), $x@p(X7),r,@%$y(X2),- - -
— ~~

head static dynamic
Stage i:
step 1 install at p: i@p($x,%y) - ri@p($x,%y)
N
Static

step 2 semi-naive evaluation evaluate i@p

step3 FOR EACH fact F(vy,vy) IN i@p
send new rule: head :- dynamic
with variables bounded by F(vy,v)

rO@p(TO) - Vx@p(ﬁ)yrz@vy()TZ): s
——

head dynamic

Stage i+ 1, at step 1:
receive ro@p(Xo) :- relname@p(Xy),r.@peername(Xs),. . .

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

30/43

Evaluation of deletion in datalog

Edge@Alice: (1,2),(2,3),(3,4),(4,5)
Rulel: Path@Alice($x,$y):-Edge@Alice($x,$y)
Rule2: Path@Alice($x,$y):-EdgeC@Alice($x,%z),Path@Alice($z,$y)

Path@Bob: (1,3),(1,5)
Rule3: Path@Alice($x,$y):-Path@Bob(x,Sy)

Path@Alice:
Rule3 Rule 3

—~— —~—
(1,2),(2,3),(3,4),(4,5),(1,3),(2,4),(3,5),(1,4),(2,5),(1,5)

Rule 1 and 2

Delete Path@Alice(2,3)
@ semi-naive requires full recomputation
@ we introduce a novel optimization based on provenance

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 31/43

Example for provenance in Webdamlog evaluation

Alice creates a gallery of pictures where she is tagged from her own
pictures and the pictures of her friends
Picture@Alice(picl,Alice)

Friend@Alice(Alice,Bob)

@ [Rule 1 at Alice]
Gallery@Alice($pic,Alice):-Picture@Alice($pic,Alice)
@ [Rule 2 at Alice]

Gallery@Alice($pic,Alice):-Friend@Alice(Alice, $£),
Picture@$f ($pic,Alice)

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 32/43

Example for provenance in Webdamlog evaluation

Alice creates a gallery of pictures where she is tagged from her own
pictures and the pictures of her friends
Picture@Alice(picl,Alice)

Friend@Alice(Alice,Bob)

@ [Rule 1 at Alice]
Gallery@Alice($pic,Alice):-Picture@Alice($pic,Alice)
@ [Rule 2 at Alice]

Gallery@Alice($pic,Alice):-Friend@Alice(Alice, $£),
Picture@$f ($pic,Alice)

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 32/43

Example for provenance in Webdamlog evaluation

Alice creates a gallery of pictures where she is tagged from her own
pictures and the pictures of her friends
Picture@Alice(picl,Alice)
Friend@Alice(Alice,Bob)
Picture@Bob(picl,Alice)
@ [Rule 1 at Alice]
Gallery@Alice($pic,Alice):-Picture@Alice($pic,Alice)
@ [Rule 2 at Alice]
Gallery@Alice($pic,Alice):-Friend@Alice(Alice, $5),
Picture@$f ($pic,Alice)
@ [Rule 3 at Bob] delegation
Gallery@Alice($pic,Alice):-Picture@Bob($pic,Alice)

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 32/43

Optimization deletion using provenance

@ Time nodes x are conjunction
@ Plus nodes + are disjunction

/ Peer Alice \ \

‘Gallery@AIice(pic1 ,Alice)‘ I Peer Bob
1L
I

Picture@Bob(pic1,Alice)

!

|
\

|
\

|
\

|
\

|
\

|
\

|
\

I

‘ Friend@Alice(Alice,Bob)

@ avoid to rederive the full relations
@ keep trace of multiple proofs for the same fact

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 33/43

Optimization deletion using provenance

@ Time nodes x are conjunction
@ Plus nodes + are disjunction

/ Peer Alice \ \

‘Gallery@AIice(pic1 ,Alice)‘ I Peer Bob
1L

Picture@Alice(pic1,Alice) I
.& CO>()

Picture@Bob(pic1,Alice)

!

|
\

|
\

|
\

|
\

|
\

|
\

|
\

I

@ avoid to rederive the full relations
@ keep trace of multiple proofs for the same fact

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 34/43

Optimization deletion using provenance

@ Time nodes x are conjunction
@ Plus nodes + are disjunction

/ Peer Alice \ \

‘Gallery@AIice(pic1 ,Alice)‘ I Peer Bob
1L

Picture@Alice(pic1,Alice) I
o

Picture@Bob(pic1,Alice)

!

|
\

|
\

|
\

|
\

|
\

|
\

|
\

I

@ avoid to rederive the full relations
@ keep trace of multiple proofs for the same fact

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 35/43

Optimization deletion using provenance

@ Time nodes x are conjunction
@ Plus nodes + are disjunction

~ ,—— = === — =

/ Peer Alice \ 1/ \
I

| ‘Gallery@AIlce (pic1,Alice) | | | Peer Bob |

| Picture@Alice(pic1,Alice) I |

|

|) '| Picture@Bob(pio1 Alice) |

! |

| Rule : | |

|

! |
|

l \ !

N o oo /

@ avoid to rederive the full relations
@ keep trace of multiple proofs for the same fact

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 36/43

Optimization deletion using provenance

@ Time nodes x are conjunction
@ Plus nodes + are disjunction

~ ,—— = === — =

/ Peer Alice \ 1/ \
I

| ‘Gallery@AIlce (pic1,Alice) ‘ I Peer Bob |

| Picture@Alice(pic1,Alice) I |

|

|) : : | Picture@Bob(pic1, Alice) |

| !

| Rule : | |

|

| I |

I\ !

N v~ /

@ avoid to rederive the full relations
@ keep trace of multiple proofs for the same fact

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 37/43

c Proof of concept application and feasibility of Webdamlog
@ Architecture

@ Experiments
@ User study

Emilien Antoine (Inria) Ph.D. defense

Architecture of a Webdamlog peer

Facts/rules updates
Webdamlog peer i

A
Reactor Web
attern g 3]
2 i interface ‘*E

—»(Database

Webdamlog
engine

Event pool

@ Wrappers translate external commands into facts/rules updates
@ Reactor pattern activates the Webdamlog engine if needed

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 39/43

Experiments

waiting time at Sue (sec)

Cost of provenance graph maintenance

time on all peers (sec)

0

QSAQ style optimization

hd
S
QSQ eval
o | <= full materialization

T T T T
20 40 60 80 1

% of matched facts

T
00

~

b4 S
¢ with provenance

o without provenance

o

T T T T T T T
0 200 400 600

of facts deleted

ilien Antoine (Inria)

800 1000 1200 1400

total fime on all peers (sec)

— propagation
————— recomputation

Deletion of facts

/_///v

time (sec)
4
L

T T T T T T
0 2000 4000 6000 8000 10000

of facts deleted

Deletion of rules

—o— propagation total
- recomputation total

o, —=— propagation waiting

= recomputation waiting

defense

of peers deleted from allFriends@Sue

December 5th, 2013

40/43

User study

To show that Webdamlog is declarative and user-friendly

Settings:
@ pool of 27 participants with and without IT training

@ a 20 minute lesson about the language
@ an exam to test

» understanding of Webdamlog programs
» ability to write Webdamlog programs

Results:
@ everyone but 2 participants perfectly understood the language
@ alarge majority wrote correct rules
@ non technical participants took longer to answer

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 41/43

Demonstration

@ A demonstration showed at SIGMOD 2013

@ A social network to share pictures among the attendees of the
conference

@ This application “Wepic” run thanks to a Webdamlog engine and
wrappers (web interface, database, . ..)

@ Scenario

» SIGMOD runs a “Wepic” peer with an empty program

» attendees run their own peer with a basic program to exchange
contact with SIGMOD

» peer can be customized by adding rules

Play the video

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013 42/43

Conclusion

We propose
@ aformal language for data management
@ an implementation of an engine for this language (with
optimizations)
@ a system for application development (with wrappers)
Future work
@ on access control (on-going work)
@ a better graphical interface
@ a more in-depth user study
@ an API for the development of applications and wrappers
@ the enhancement Webdamlog with ontology technology
@ optimization techniques, e.g. dQSQ

Emilien Antoine (Inria) Ph.D. defense December 5th, 2013

43/43

	Context and problematic
	Webdamlog a language for distributed knowledge
	Datalog
	Webdamlog

	System implementation of a Webdamlog engine
	Webdamlog evaluation
	Deletions in Webdamlog

	Proof of concept application and feasibility of Webdamlog
	Architecture
	Experiments
	User study

	Conclusion

