
Distributed data management with the
rule-based language: Webdamlog

Ph.D. defense

Émilien ANTOINE

Supervisor: Serge ABITEBOUL

Webdam Inria ENS-Cachan Université de Paris Sud

December 5th, 2013

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 1 / 43

1 Context and problematic

2 Webdamlog a language for distributed knowledge

3 System implementation of a Webdamlog engine

4 Proof of concept application and feasibility of Webdamlog

5 Conclusion

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 2 / 43

Focus of this thesis

Allow the Web users to manage their personal data
in place

Two main aspects:
personal data are distributed
Web users want to automate tasks and they are not
programmers

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 3 / 43

Problem overview

We are interested in all kinds of data of a Web user
personal data photos, movies, music, emails
social data annotations, recommendations, social links
localization bookmarks, phone numbers

privacy logins/passwords, ssh keys

Data of users are heterogeneous by nature

Data are distributed on several
devices laptops, smartphones, Internet boxes, cloud-storage, . . .

systems Facebook, Picasa, Gmail, . . .

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 4 / 43

Typical distribution of knowledge

Internet

Alice

Bob

CharlieP2P

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 5 / 43

Example of distributed task on personal data
Alice has

a blog on Wordpress.com to publish movie reviews
a Facebook and Gmail account to talk to friends
a Dropbox account to share files

she wishes to advertise friends about new reviews and share the
movie
Cumbersome tasks for humans

remember each login/password
sign on each website
use each GUI

Solutions
hope that a system, e.g. Facebook, provides an appropriate
wrapper
try to specify it with a system such as ifttt.com “if this then that”
if everything fails, write a script (only for hackers)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 6 / 43

ifttt.com

Example of distributed task on personal data
Alice has

a blog on Wordpress.com to publish movie reviews
a Facebook and Gmail account to talk to friends
a Dropbox account to share files

she wishes to advertise friends about new reviews and share the
movie
Cumbersome tasks for humans

remember each login/password
sign on each website
use each GUI

Solutions
hope that a system, e.g. Facebook, provides an appropriate
wrapper
try to specify it with a system such as ifttt.com “if this then that”
if everything fails, write a script (only for hackers)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 6 / 43

ifttt.com

The Web as a distributed knowledge base

Give to Alice a system that
use the Web service to manage her knowledge
allow her to specify tasks
hide the network and protocol issues

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 7 / 43

Principles underlying the approach

Knowledge and computation are distributed on several peers
These peers are autonomous (P2P)
They are willing to collaborate (delegation)
Knowledge from heterogeneous systems is integrated using
“wrappers” in a mediation style

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 8 / 43

1 Context and problematic

2 Webdamlog a language for distributed knowledge
Datalog
Webdamlog

3 System implementation of a Webdamlog engine

4 Proof of concept application and feasibility of Webdamlog

5 Conclusion

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 9 / 43

Representing knowledge in datalog

Facts in relations:

Friend Picture Location
user friend with
Alice Bob
Alice Charlie
Bob Charlie

id tag
pic1 Alice
pic2 Bob
pic3 Charlie

pic id location
pic1 Grenoble
pic2 Nantes
pic3 Rennes

Rules:
Where($someone,$loc)︸ ︷︷ ︸

head

:- Picture($pic, $someone)︸ ︷︷ ︸
atom

, Location($pic, $loc)︸ ︷︷ ︸
atom︸ ︷︷ ︸

body

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 10 / 43

Representing knowledge in datalog

In datalog relations are either:
extensional: Friend,Picture,Location

I a list of facts stored in database
I only in the body of datalog rules

intensional: Where
I a list of facts defined by rules ie. a view
I appear at least once in the head of a rule

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 11 / 43

Datalog supports recursion

Recursion needed in graphs e.g. network path, social link

FoF($x,$y) :- Friend($x,$y)

FoF($x,$y) :- Friend($x,$z), FoF($z,$y)

Already exists in SQL but ugly

1 WITH RECURSIVE FoF(From, To) AS

2 (

3 SELECT From, To, FROM Friend

4 UNION

5 SELECT Friend.From, FoF.End

6 FROM Friend, FoF

7 WHERE Friend.To = FoF.From);

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 12 / 43

Some datalog extensions we use

update extensional relations in the head of rules:
Friend($y,$x) :- Friend($x,$y)

negation in the body of rules
Picture($x,Charlie) :- Picture($x,Alice), ¬Picture($x,Bob)

distributed relations are distributed over the network
Picture@Bob($x,Bob) :- Picture@Alice($x,Bob)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 13 / 43

Webdamlog

Schema
(π,E , I, σ) where

π is a possibly infinite set of peer names
E is a set of extensional relations of the form m@p for p ∈ π

I is a set of intensional relations of the form m@p for p ∈ π

σ(m@p) typing function, arity and sorts of m@p fields

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 14 / 43

Webdamlog

Facts
m@p(a1, ...,an), where

m is a relation name
p is a peer name in π
n = σ(m@p) and a1, . . . ,an are data values
data values includes the relations and peer names

Extensional
Friend@Alice(Alice,Bob)

Friend@Alice(Alice,Charlie)

Friend@Alice(Bob,Charlie)

Picture@Alice(pic1,Alice)

. . .

Intensional
Where@Alice(Alice,Grenoble)

Where@Alice(Bob,Nantes)

Where@Alice(Charlie,Rennes)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 15 / 43

Webdamlog
Rules
$Rn+1@$Pn+1($Un+1) :- (¬)$R1@$P1($U1), . . . , (¬)$Rn@$Pn($Un)

$Ri are relation terms possibly variables
$Pi are peer terms possibly variables
$U i are tuples of terms
read body from left to right

Safety condition
$Rn+1 $Pn+1 must appear positively bound in the body
$Pi must be previously bound
each variables must appear in positive atom before being used

Rules reside at peers:
[at Alice]

Picture@Alice($x,$y) :- Friend@Alice(Alice, $friend),

Picture@ $friend ($x,$y)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 16 / 43

Webdamlog
Rules
$Rn+1@$Pn+1($Un+1) :- (¬)$R1@$P1($U1), . . . , (¬)$Rn@$Pn($Un)

$Ri are relation terms possibly variables
$Pi are peer terms possibly variables
$U i are tuples of terms
read body from left to right

Safety condition
$Rn+1 $Pn+1 must appear positively bound in the body
$Pi must be previously bound
each variables must appear in positive atom before being used

Rules reside at peers:
[at Alice]

Picture@Alice($x,$y) :- Friend@Alice(Alice, $friend),

Picture@ $friend ($x,$y)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 16 / 43

Particularity of Webdamlog rules

[at p]
r0@p0(xo) :- r1@p1(x1), r2@p2(x2), ...,rn@pn(xn)

Semantic depending on 3 criteria
p1, . . . ,pn = p, the rule is called local
head r0@p0(xo) is intensional or extensional
head r0@p0(xo) is local or not (p0 = p or not)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 17 / 43

Local rules with local intensional head

Extensional: Friend@Alice: (Alice,Bob),(Alice,Charlie),(Bob,Charlie)
Intensional: FoF@Alice

[at Alice]
FoF@Alice($x,$y):-Friend@Alice($x,$y)

FoF@Alice($x,$y):- Friend@Alice($x,$z), FoF@Alice($z,$y)

FoF will contain the transitive closure of Friend:
(Alice,Bob), (Alice,Charlie), (Bob,Charlie), (Alice,Charlie)

Intuition
This is standard datalog evaluation

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 18 / 43

Local rules with local extensional head

Extensional: Friend@Alice
Step 0: (Alice,Bob),(Alice,Charlie),(Bob,Charlie)

[at Alice]
Friend@Alice($y,$x):-Friend@Alice($x,$y)

Step 1: (Bob,Alice),(Charlie,Alice),(Charlie,Bob)
Step 2: (Alice,Bob),(Alice,Charlie),(Bob,Charlie)

Intuition
Database updates

Remarks:
by default extensional facts are consumed
unless we declare the relation as persistent

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 19 / 43

Local rules with non-local extensional head

Extensional: Today@Alice(december 5)

Extensional: Event@Alice(birthday,december 5,SMS,Bob-phone)

[at Alice]
$r@$p(Happy birthday):-Today@Alice($date),

Event@Alice(birthday,$date,$r,$p)

Produce SMS@Bob-phone(Happy birthday)

Intuition
Messaging between peers

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 20 / 43

Local rules with non-local intensional head

Extensional: Friend@Alice
Intensional: Contact@Bob

[at Alice]
Contact@Bob($x,$y):- Friend@Alice($x,$y)

Bob gets a view on Alice’s friends

Intuition
External view definition

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 21 / 43

Non-local rules: delegation
The main novelty of Webdamlog

Extensional: Friend@Alice: (Alice,Bob),(Alice,Charlie),(Bob,Charlie)

[at Alice]
Picture@Alice($pic,Alice):-Friend@Alice(Alice,$f),

Picture@$f($pic,Alice)

This will install two rules:

[at Bob] Picture@Alice($pic,Alice):-Picture@Bob($pic,Alice)
[at Charlie] Picture@Alice($pic,Alice):-Picture@Charlie($pic,Alice)

Remark
If Friend@Alice(Alice,Bob) no longer holds the delegation is
uninstalled

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 22 / 43

Non-local rules: delegation 2
The main novelty of Webdamlog

Intuition
Possible to ask another peer to perform some tasks for you
(distributed computation)
Possible to exchange knowledge between peers

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 23 / 43

Webdamlog semantic

State

(I, Γ, Γ̃)

I(p) the local state of p is a finite set of extensional facts
Γ(p) is the finite set of rules at p
Γ̃(p,q) (p 6= q) is the set of rules that p delegated to q

State transition
Choose some peer p randomly – asynchronously
Compute the transition: (I0, Γ0, Γ̃0) → (I1, Γ1, Γ̃1) → (I2, Γ2, Γ̃2) → . . .

the database updates at p
the messages sent to the other peers
the delegations of rules to other peers

Fair sequence: each peer is selected infinitely often

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 24 / 43

Webdamlog summary

Webdamlog is datalog with novel extensions
variables in relation and peer names
delegation

both imply installing rules at run-time

Results:
formal definition of Webdamlog
expressivity results:

I the model with delegation is more general, unless all peers and
programs are known in advance

convergence is very hard to achieve because of asynchronicity

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 25 / 43

1 Context and problematic

2 Webdamlog a language for distributed knowledge

3 System implementation of a Webdamlog engine
Webdamlog evaluation
Deletions in Webdamlog

4 Proof of concept application and feasibility of Webdamlog

5 Conclusion

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 26 / 43

Implementation on top of Bud

Bud [UC Berkeley] is a distributed datalog engine with updates; it
supports

local rules with local extensional head (semi-naive)
local rules with non-local extensional head (semi-naive)

Bud does not support
negation
intensional relation optimizations (query sub-query, magic sets)

Bud neither any other engine implements requirements for
Webdamlog

variables in relation and peer names
delegation
installing rules at run-time

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 27 / 43

Semi-naive
Naive evaluation leads to redundant computation
Edge: (1,2),(2,3),(3,4),(4,5)

Path($x,$y):-Edge($x,$y)

Path($x,$y):-Edge($x,$z),Path($z,$y)

Path(I)0 =∅

Path(I)1 =Path(I)0 ∪ {Path(1, 2),Path(2, 3),Path(3, 4),Path(4, 5)}

Path(I)2 =Path(I)1 ∪ {Path(1, 3),Path(2, 4),Path(3, 5)}

Path(I)3 =Path(I)2 ∪ {Path(1, 4),Path(2, 5)}

Path(I)4 =Path(I)3 ∪ {Path(1, 5)}

Path(I)5 =Path(I)4

︸ ︷︷ ︸
∆ new facts since previous step

Semi-naive use delta of previous step to compute the current step
Pathi($x,$y):-Edge($x,$z),∆Pathi−1($z,$y)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 28 / 43

Webdamlog engine run

Run a Webdamlog stage (I, Γ, Γ̃) → (I′, Γ′, Γ̃′) in three steps

1 inputs are collected and a new state is defined
I insert/delete Webdamlog facts and rules
I update deltas of relations
I compile the Webdamlog program into a Bud program

2 semi-naive evaluation: monotonic Bud program with a fixed set
of local rules run to fixpoint

3 output messages and delegations are collected and sent to other
peers for next stage

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 29 / 43

Management of variables
[at p]
Fact: r1@p(relname,peername)
Rule: r0@p(xo)︸ ︷︷ ︸

head

:- r1@p($x,$y),︸ ︷︷ ︸
static

$x@p(x1),r2@$y(x2),. . .︸ ︷︷ ︸
dynamic

Stage i:

step 1 install at p: i@p($x,$y) :- r1@p($x,$y)︸ ︷︷ ︸
static

step 2 semi-naive evaluation evaluate i@p
step3 FOR EACH fact F(vx ,vy) IN i@p

send new rule: head :- dynamic
with variables bounded by F(vx ,vy)
r0@p(x0)︸ ︷︷ ︸

head

:- vx@p(x1),r2@vy (x2), . . .︸ ︷︷ ︸
dynamic

Stage i + 1, at step 1:
receive r0@p(xo) :- relname@p(x1),r2@peername(x2),. . .

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 30 / 43

Management of variables
[at p]
Fact: r1@p(relname,peername)
Rule: r0@p(xo)︸ ︷︷ ︸

head

:- r1@p($x,$y),︸ ︷︷ ︸
static

$x@p(x1),r2@$y(x2),. . .︸ ︷︷ ︸
dynamic

Stage i:

step 1 install at p: i@p($x,$y) :- r1@p($x,$y)︸ ︷︷ ︸
static

step 2 semi-naive evaluation evaluate i@p
step3 FOR EACH fact F(vx ,vy) IN i@p

send new rule: head :- dynamic
with variables bounded by F(vx ,vy)
r0@p(x0)︸ ︷︷ ︸

head

:- vx@p(x1),r2@vy (x2), . . .︸ ︷︷ ︸
dynamic

Stage i + 1, at step 1:
receive r0@p(xo) :- relname@p(x1),r2@peername(x2),. . .

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 30 / 43

Management of variables
[at p]
Fact: r1@p(relname,peername)
Rule: r0@p(xo)︸ ︷︷ ︸

head

:- r1@p($x,$y),︸ ︷︷ ︸
static

$x@p(x1),r2@$y(x2),. . .︸ ︷︷ ︸
dynamic

Stage i:

step 1 install at p: i@p($x,$y) :- r1@p($x,$y)︸ ︷︷ ︸
static

step 2 semi-naive evaluation evaluate i@p
step3 FOR EACH fact F(vx ,vy) IN i@p

send new rule: head :- dynamic
with variables bounded by F(vx ,vy)
r0@p(x0)︸ ︷︷ ︸

head

:- vx@p(x1),r2@vy (x2), . . .︸ ︷︷ ︸
dynamic

Stage i + 1, at step 1:
receive r0@p(xo) :- relname@p(x1),r2@peername(x2),. . .

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 30 / 43

Management of variables
[at p]
Fact: r1@p(relname,peername)
Rule: r0@p(xo)︸ ︷︷ ︸

head

:- r1@p($x,$y),︸ ︷︷ ︸
static

$x@p(x1),r2@$y(x2),. . .︸ ︷︷ ︸
dynamic

Stage i:

step 1 install at p: i@p($x,$y) :- r1@p($x,$y)︸ ︷︷ ︸
static

step 2 semi-naive evaluation evaluate i@p
step3 FOR EACH fact F(vx ,vy) IN i@p

send new rule: head :- dynamic
with variables bounded by F(vx ,vy)
r0@p(x0)︸ ︷︷ ︸

head

:- vx@p(x1),r2@vy (x2), . . .︸ ︷︷ ︸
dynamic

Stage i + 1, at step 1:
receive r0@p(xo) :- relname@p(x1),r2@peername(x2),. . .

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 30 / 43

Management of variables
[at p]
Fact: r1@p(relname,peername)
Rule: r0@p(xo)︸ ︷︷ ︸

head

:- r1@p($x,$y),︸ ︷︷ ︸
static

$x@p(x1),r2@$y(x2),. . .︸ ︷︷ ︸
dynamic

Stage i:

step 1 install at p: i@p($x,$y) :- r1@p($x,$y)︸ ︷︷ ︸
static

step 2 semi-naive evaluation evaluate i@p
step3 FOR EACH fact F(vx ,vy) IN i@p

send new rule: head :- dynamic
with variables bounded by F(vx ,vy)
r0@p(x0)︸ ︷︷ ︸

head

:- vx@p(x1),r2@vy (x2), . . .︸ ︷︷ ︸
dynamic

Stage i + 1, at step 1:
receive r0@p(xo) :- relname@p(x1),r2@peername(x2),. . .

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 30 / 43

Management of variables
[at p]
Fact: r1@p(relname,peername)
Rule: r0@p(xo)︸ ︷︷ ︸

head

:- r1@p($x,$y),︸ ︷︷ ︸
static

$x@p(x1),r2@$y(x2),. . .︸ ︷︷ ︸
dynamic

Stage i:

step 1 install at p: i@p($x,$y) :- r1@p($x,$y)︸ ︷︷ ︸
static

step 2 semi-naive evaluation evaluate i@p
step3 FOR EACH fact F(vx ,vy) IN i@p

send new rule: head :- dynamic
with variables bounded by F(vx ,vy)
r0@p(x0)︸ ︷︷ ︸

head

:- vx@p(x1),r2@vy (x2), . . .︸ ︷︷ ︸
dynamic

Stage i + 1, at step 1:
receive r0@p(xo) :- relname@p(x1),r2@peername(x2),. . .

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 30 / 43

Evaluation of deletion in datalog

Edge@Alice: (1,2),(2,3),(3,4),(4,5)

Rule1: Path@Alice($x,$y):-Edge@Alice($x,$y)

Rule2: Path@Alice($x,$y):-Edge@Alice($x,$z),Path@Alice($z,$y)

Path@Bob: (1,3),(1,5)

Rule3: Path@Alice($x,$y):-Path@Bob($x,$y)

Path@Alice:

(1,2), (2,3), (3,4), (4,5),

Rule3︷ ︸︸ ︷
(1,3), (2,4), (3,5), (1,4), (2,5),

Rule 3︷ ︸︸ ︷
(1,5)︸ ︷︷ ︸

Rule 1 and 2

Delete Path@Alice(2,3)
semi-naive requires full recomputation
we introduce a novel optimization based on provenance

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 31 / 43

Example for provenance in Webdamlog evaluation

Alice creates a gallery of pictures where she is tagged from her own
pictures and the pictures of her friends
Picture@Alice(pic1,Alice)

Friend@Alice(Alice,Bob)

Picture@Bob(pic1,Alice)

[Rule 1 at Alice]
Gallery@Alice($pic,Alice):-Picture@Alice($pic,Alice)
[Rule 2 at Alice]
Gallery@Alice($pic,Alice):-Friend@Alice(Alice,$f),

Picture@$f($pic,Alice)

[Rule 3 at Bob] delegation
Gallery@Alice($pic,Alice):-Picture@Bob($pic,Alice)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 32 / 43

Example for provenance in Webdamlog evaluation

Alice creates a gallery of pictures where she is tagged from her own
pictures and the pictures of her friends
Picture@Alice(pic1,Alice)

Friend@Alice(Alice,Bob)

Picture@Bob(pic1,Alice)

[Rule 1 at Alice]
Gallery@Alice($pic,Alice):-Picture@Alice($pic,Alice)
[Rule 2 at Alice]
Gallery@Alice($pic,Alice):-Friend@Alice(Alice,$f),

Picture@$f($pic,Alice)

[Rule 3 at Bob] delegation
Gallery@Alice($pic,Alice):-Picture@Bob($pic,Alice)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 32 / 43

Example for provenance in Webdamlog evaluation

Alice creates a gallery of pictures where she is tagged from her own
pictures and the pictures of her friends
Picture@Alice(pic1,Alice)

Friend@Alice(Alice,Bob)

Picture@Bob(pic1,Alice)

[Rule 1 at Alice]
Gallery@Alice($pic,Alice):-Picture@Alice($pic,Alice)
[Rule 2 at Alice]
Gallery@Alice($pic,Alice):-Friend@Alice(Alice,$f),

Picture@$f($pic,Alice)

[Rule 3 at Bob] delegation
Gallery@Alice($pic,Alice):-Picture@Bob($pic,Alice)

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 32 / 43

Optimization deletion using provenance

Time nodes x are conjunction
Plus nodes + are disjunction

Picture@Alice(pic1,Alice)

Rule 1 +

xFriend@Alice(Alice,Bob)

Picture@Bob(pic1,Alice)

Rule 2 x

Peer Bob

Peer Alice

Gallery@Alice(pic1,Alice)

Rule 3

x

avoid to rederive the full relations
keep trace of multiple proofs for the same fact

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 33 / 43

Optimization deletion using provenance

Time nodes x are conjunction
Plus nodes + are disjunction

Picture@Alice(pic1,Alice)

Rule 1 +

x

Picture@Bob(pic1,Alice)

Rule 2 x

Peer Bob

Peer Alice

Gallery@Alice(pic1,Alice)

Rule 3

x

avoid to rederive the full relations
keep trace of multiple proofs for the same fact

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 34 / 43

Optimization deletion using provenance

Time nodes x are conjunction
Plus nodes + are disjunction

Picture@Alice(pic1,Alice)

Rule 1 +
Picture@Bob(pic1,Alice)

Rule 2 x

Peer Bob

Peer Alice

Gallery@Alice(pic1,Alice)

Rule 3

x

avoid to rederive the full relations
keep trace of multiple proofs for the same fact

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 35 / 43

Optimization deletion using provenance

Time nodes x are conjunction
Plus nodes + are disjunction

Picture@Alice(pic1,Alice)

Rule 1 +
Picture@Bob(pic1,Alice)

Rule 2 x

Peer Bob

Peer Alice

Gallery@Alice(pic1,Alice)

x

avoid to rederive the full relations
keep trace of multiple proofs for the same fact

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 36 / 43

Optimization deletion using provenance

Time nodes x are conjunction
Plus nodes + are disjunction

Picture@Alice(pic1,Alice)

Rule 1 +
Picture@Bob(pic1,Alice)

Rule 2

Peer Bob

Peer Alice

Gallery@Alice(pic1,Alice)

x

avoid to rederive the full relations
keep trace of multiple proofs for the same fact

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 37 / 43

1 Context and problematic

2 Webdamlog a language for distributed knowledge

3 System implementation of a Webdamlog engine

4 Proof of concept application and feasibility of Webdamlog
Architecture
Experiments
User study

5 Conclusion

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 38 / 43

Architecture of a Webdamlog peer

IMAP
SMTP

HTML
Javascript

ORM

HTTP
JSON

Web
interface

Database

Webdamlog
engine

Facebook

Email

Event pool

Reactor
pattern

Webdamlog peer

updates
Wrappers

Facts/rules updates

Wrappers translate external commands into facts/rules updates
Reactor pattern activates the Webdamlog engine if needed

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 39 / 43

Experiments

QSQ style optimization

20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

% of matched facts

w
ai

tin
g

tim
e

at
 S

ue
 (s

ec
)

QSQ evaluation
full materialization

Cost of provenance graph maintenance

0 200 400 600 800 1000 1200 1400

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

of facts deleted

to
ta

l t
im

e
on

 a
ll

pe
er

s
(s

ec
)

with provenance
without provenance

Deletion of facts

0 2000 4000 6000 8000 10000

2
4

6
8

of facts deleted

to
ta

l t
im

e
on

 a
ll

pe
er

s
(s

ec
)

propagation
recomputation

Deletion of rules

0 20 40 60 80 100
0

2
4

6
8

of peers deleted from allFriends@Sue

tim
e

(s
ec

)

propagation total
recomputation total
propagation waiting
recomputation waiting

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 40 / 43

User study
To show that Webdamlog is declarative and user-friendly

Settings:
pool of 27 participants with and without IT training
a 20 minute lesson about the language
an exam to test

I understanding of Webdamlog programs
I ability to write Webdamlog programs

Results:
everyone but 2 participants perfectly understood the language
a large majority wrote correct rules
non technical participants took longer to answer

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 41 / 43

Demonstration

A demonstration showed at SIGMOD 2013
A social network to share pictures among the attendees of the
conference
This application “Wepic” run thanks to a Webdamlog engine and
wrappers (web interface, database, . . .)
Scenario

I SIGMOD runs a “Wepic” peer with an empty program
I attendees run their own peer with a basic program to exchange

contact with SIGMOD
I peer can be customized by adding rules

Play the video

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 42 / 43

Conclusion

We propose
a formal language for data management
an implementation of an engine for this language (with
optimizations)
a system for application development (with wrappers)

Future work
on access control (on-going work)
a better graphical interface
a more in-depth user study
an API for the development of applications and wrappers
the enhancement Webdamlog with ontology technology
optimization techniques, e.g. dQSQ

Émilien Antoine (Inria) Ph.D. defense December 5th, 2013 43 / 43

	Context and problematic
	Webdamlog a language for distributed knowledge
	Datalog
	Webdamlog

	System implementation of a Webdamlog engine
	Webdamlog evaluation
	Deletions in Webdamlog

	Proof of concept application and feasibility of Webdamlog
	Architecture
	Experiments
	User study

	Conclusion

