
Distributed Indexing
Les Houches – May 18, 2010

Serge Abiteboul Ioana Manolescu Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution

http://webdam.inria.fr/textbook

May 15, 2010

WebDam (INRIA) Distributed Indexing May 15, 2010 1 / 60



Introduction

Outline

1 Introduction

2 Overview of distributed data management principles

3 Distributed indexing

4 Hash-based approaches

5 Tree-based approaches

6 Distributed Computing with MapReduce

WebDam (INRIA) Distributed Indexing May 15, 2010 2 / 60



Introduction

What is it about?

The Web is a huge source of information: search engines (Google, Yahoo!)
collect and store billions of documents – E-commerce web sites like Amazon
manage hundreds of millions of customers – and Facebook, eBay, etc.

Very large datasets – potentially Petabytes, 1015 bytes, soon Exabytes
(1018), perhaps ultimately Zetabytes (1021), the estimated size of the
digital universe.

Distribution is the key – it brings scalability, but raises challenging
problems (high risk of failure).

Specific requirements:

1 efficient and reliable batch analysis of very large collections.

2 low-latency algorithms for “point queries” (e.g., direct access to a few
objects) over TBs datasets.

WebDam (INRIA) Distributed Indexing May 15, 2010 3 / 60



Introduction

Outline

Guidelines and principles for distributed data management
⇒ in the present talk, focus on cluster-based approaches (vs. P2P
environments)

Indexing techniques for very large collections

Hash-based techniques for (key ,value) models.
⇒ Illustration with the Dynamo system (Amazon)

Tree-based structures supporting range queries
⇒ Illustration with Bigtable (Google)

Distributed batch processing: MapReduce.

Distributed computing techniques

Example of a low-level programming model: MapReduce

Expressive data processing languages (Pig Latin)

Data Management in Clouds – Illustration with Amazon EC2.

WebDam (INRIA) Distributed Indexing May 15, 2010 4 / 60



Overview of distributed data management principles

Outline

1 Introduction

2 Overview of distributed data management principles

3 Distributed indexing

4 Hash-based approaches

5 Tree-based approaches

6 Distributed Computing with MapReduce

WebDam (INRIA) Distributed Indexing May 15, 2010 5 / 60



Overview of distributed data management principles

Distributed systems

A distributed system is an application that coordinates the actions of
several computers.

This coordination is achieved by exchanging messages which are pieces of
data that convey some information.
⇒ “shared-nothing” architecture -> no shared memory

The system relies on a network that connects the computers and handles
the routing of messages.
⇒ Local area networks (LAN), Peer to peer (P2P) networks, . . .

WebDam (INRIA) Distributed Indexing May 15, 2010 6 / 60



Overview of distributed data management principles

LAN-based infrastructure: clusters of machines
Three communication levels: “racks”, clusters, and groups of clusters.

WebDam (INRIA) Distributed Indexing May 15, 2010 7 / 60



Overview of distributed data management principles

Example: Google (mid-2009)

1 ≈ 40 servers per rack;

2 ≈ 150 racks per data center (cluster)

3 how many clusters? Google’s secret, and constantly evolving . . .

Rough estimate: 150-200 data centers? 1,000,000 servers?

WebDam (INRIA) Distributed Indexing May 15, 2010 8 / 60



Overview of distributed data management principles

P2P infrastructure: Internet-based communication

Nodes, or “peers” communicate with messages sent over the Internet
network.

The physical route may consist of 10 or more forwarding messages, or
“hops”.

WebDam (INRIA) Distributed Indexing May 15, 2010 9 / 60



Overview of distributed data management principles

Performance

Type Latency Bandwidth

Disk ≈ 5×10−3s (5 millisec.); At best 100 MB/s
LAN ≈ 1−2×10−3s (1-2 millisec.); ≈ 1GB/s (single rack);

≈ 100MB/s (switched);
Internet Highly variable. Typ. 10-100 ms.; Highly variable. Typ. a few MBs.;

WebDam (INRIA) Distributed Indexing May 15, 2010 10 / 60



Overview of distributed data management principles

Distribution, why?

Sequential access. It takes
166 minutes (more than 2 hours
and a half) to read a 1 TB disk.
Parallel access. With 100
disks, assuming that the disks
work in parallel and sequen-
tially: about 1mn 30s.
Distributed access. With 100
computers, each disposing of its
own local disk: each CPU pro-
cesses its own dataset.

Scalability

The latter solution is scalable, by adding new computing resources.

WebDam (INRIA) Distributed Indexing May 15, 2010 11 / 60



Overview of distributed data management principles

Properties of a distributed system: (i) scalability

Scalability refers to the ability of a system to continuously evolve in order
to support an evergrowing amount of tasks.

A scalable system should (i) distribute evenly the task load to all
participants, and (ii) ensure a negligible distribution management cost.

WebDam (INRIA) Distributed Indexing May 15, 2010 12 / 60



Overview of distributed data management principles

Properties of a distributed system: (ii) efficiency

Two usual measures of its efficiency are the response time (or latency)
which denotes the delay to obtain the first item, and the throughput (or
bandwidth) which denotes the number of items delivered in a given period
unit (e.g., a second).

Unit costs:

1 number of messages globally sent by the nodes of the system,
regardless of the message size;

2 size of messages representing the volume of data exchanges.

WebDam (INRIA) Distributed Indexing May 15, 2010 13 / 60



Overview of distributed data management principles

Properties of a distributed system: (iii) availability and
consistency
Availability is the capacity of of a system to limit as much as possible its
latency.
Involves several aspects:

Replication (caches):

Quick restart on failures: monitor the participating nodes to detect
failures as early as possible (usually via “heartbeat” messages);

Consistency: essentially, ensures that the system faithfully reflects the
actions of a user.

Strong consistency (ACID properties) – often requires a (slow)
synchronous replication, and possibly heavy locking mechanisms.

Weak consistency – accept to serve some requests with outdated data.

Eventual consistency – same as before, but the system is guaranteed
to converge towards a consistent state based on the last version.

Standard RDBMS favor consistency over availability – one of the reasons
(?) of the ’NoSQL’ trend.

WebDam (INRIA) Distributed Indexing May 15, 2010 14 / 60



Distributed indexing

Outline

1 Introduction

2 Overview of distributed data management principles

3 Distributed indexing

4 Hash-based approaches

5 Tree-based approaches

6 Distributed Computing with MapReduce

WebDam (INRIA) Distributed Indexing May 15, 2010 15 / 60



Distributed indexing

Preliminaries

We assume a (very) large collection C of pairs (k ,v), where k is a key and
v is the value of an object (seen as row data).

An index on C is a structure that associates the key with its (physical)
address of v . It supports dictionary operations:

1 insertion insert(k ,a),

2 deletion delete(k),

3 key search search(k): a.

4 (optional) range search range(k1, k2): {a}.

The efficiency of an index is expressed as the number of unit costs required
to execute an operation.

WebDam (INRIA) Distributed Indexing May 15, 2010 16 / 60



Hash-based approaches

Outline

1 Introduction

2 Overview of distributed data management principles

3 Distributed indexing

4 Hash-based approaches

5 Tree-based approaches

6 Distributed Computing with MapReduce

WebDam (INRIA) Distributed Indexing May 15, 2010 17 / 60



Hash-based approaches

Basics: Centralized Hash files
The collection consists of (key ,value) pairs. A hash function evenly
distributes the values in buckets w.r.t. the key.

This is the basic, static, scheme: the number of buckets is fixed.
Dynamic hashing extends the number of buckets as the collection grows –
the most popular method is linear hashing.

WebDam (INRIA) Distributed Indexing May 15, 2010 18 / 60



Hash-based approaches

Issues with hash structures distribution

Straighforward idea: everybody uses the same hash function, and buckets
are replaced by servers.

Two issues:

Dynamicity. At Web scale, we must be able to add or remove servers
at will.

Inconsistencies. It is very hard to ensure that all participants share an
accurante view of the system (e.g., the hash function).

Some solutions:

Distributed linear hashing: sophisticated scheme that allows Client
nodes to use an outdated image of the has file; guarantees eventual
convergence.

Consistent hashing: to be presented next.
NB: consistent hashing is used in several systems, including Dynamo
(Amazon)/Voldemort (Open Source), and P2P structures, e.g. Chord.

WebDam (INRIA) Distributed Indexing May 15, 2010 19 / 60



Hash-based approaches

Consistent hashing

Let N be the number of servers. The following functions

hash(key)→modulo(key ,N) = i

maps a pair (key ,value) to server Si .

Fact: if N changes, or if a client uses an invalid value for N, the mapping
becomes inconsistent.

With Consistent hashing, addition or removal of an instance does not significantly

a simple, non-mutable hash function h maps both the keys to a the
servers IPs to a large address space A (.e.g, [0,264−1);

A is organized as a ring, scanned in clockwise order;

if S and S ′ are two adjacent servers on the ring: all the keys in range
]h(S),h(S ′)] are mapped to S ′.

WebDam (INRIA) Distributed Indexing May 15, 2010 20 / 60



Hash-based approaches

Illustration
Example: item A is mapped to server IP1-2; item B to server . . .

A server is added or removed? A local re-hashing is necessary.
WebDam (INRIA) Distributed Indexing May 15, 2010 21 / 60



Hash-based approaches

Some (really useful) refinements

What if a server fails? How can we balance the load?

Failure ⇒ use replication; put a copy on
the next machine (on the ring), then on
the next after the next, and so on.
Load balancing⇒ map a server to several
points on the ring (virtual nodes)

the more points, the more load
received by a server;

also useful if the server fails: data
rellocation is more evenly
distributed.

also useful in case of heterogeneity
(the rule in large-scale systems).

WebDam (INRIA) Distributed Indexing May 15, 2010 22 / 60



Hash-based approaches

Distributed indexing based on consistent hashing
Main question where is the hash directory (servers locations)? Several
possible answers:

On a specific (“Master") node, acting as a load balancer. Example:
caching systems.
⇒ probably not a scalable architecture.

Each node records its successor on the ring.
⇒ may require O(N) messages for routing queries – not resilient to
failures.

Each node records logN carefully chosen other nodes.
⇒ ensures O(N) messages for routing queries – convenient trade-off
for highly dynamic networks (e.g., P2P)

Full duplication of the hash directory at each node.
⇒ ensures 1 message for routing – heavy maintenance protocol which
can be achieved through gossiping (broadcast of any event affecting
the network topology).

WebDam (INRIA) Distributed Indexing May 15, 2010 23 / 60



Hash-based approaches

Case study: Dynamo (Amazon)

A distributed system that targets high availability (your shopping cart is
stored there!).

Duplicates and maintains the hash directory at each node via gossiping
– queries can be routed to the correct server with 1 message.

The hosting server replicates N (application parameter) copies of its
objects on the N distinct nodes that follow S on the ring.

Propagates updates asynchronously → may result in update conflicts,
solved by the application at read-time.

Use a fully distributed failure detection mechanism (failure are
detected by individual nodes when then fail to communicate with
others)

An Open-source version is available at http://project-voldemort.com/

WebDam (INRIA) Distributed Indexing May 15, 2010 24 / 60



Tree-based approaches

Outline

1 Introduction

2 Overview of distributed data management principles

3 Distributed indexing

4 Hash-based approaches

5 Tree-based approaches

6 Distributed Computing with MapReduce

WebDam (INRIA) Distributed Indexing May 15, 2010 25 / 60



Tree-based approaches

Issues with search trees distribution
All operations follow a top-down path → potential factor of non-scalability

Solutions for distributed structures:

1 caching of the tree structure on the the Client node
2 replication of parts of the tree

3 routing tables, stored at each node, enabling horizontal navigation in
the tree.

WebDam (INRIA) Distributed Indexing May 15, 2010 26 / 60



Tree-based approaches

Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

each node covers a range and
contains all objects whose key
belongs to the range.

a

range(-∞|∞)

WebDam (INRIA) Distributed Indexing May 15, 2010 27 / 60



Tree-based approaches

Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

When a server is added, a split
occurs, and objects are evenly
distributed.
A split generates a routing node
and a data node – They can be
allocated to a same server.
The range of a routing node
covers its subtree.

a

(-∞|∞)

b

(-∞|λ1)

c

(λ1|∞)

WebDam (INRIA) Distributed Indexing May 15, 2010 27 / 60



Tree-based approaches

Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

The tree grows by splitting
leaves and adding a local rout-
ing node.
The tree is balanced iff, at each
node, the subtrees heights do
not differ by more than 1 (e.g.,
AVL trees).
With non-uniform datasets,
split may lead to imbalance.

a

(-∞|∞)

b

(-∞|λ1)

c

(-λ1|∞)

d

(λ1|λ2)

e

(λ2|∞)

WebDam (INRIA) Distributed Indexing May 15, 2010 27 / 60



Tree-based approaches

Balancing the tree

When th tree gets imbalanced A rotation is required (still similar to AVL
trees):

The approach is still non scalable – every path goes through the root.

WebDam (INRIA) Distributed Indexing May 15, 2010 28 / 60



Tree-based approaches

A complete example

a

b

d

h i

e

j k

p q

c

f

l m

g

n o

r s

If we do not add some information: node a receives all the messages, node
b receives half of the messages, node d 1/4 of the messages, etc (for
uniform query distr.).

⇒ we will partially replicate the tree structure at each node to balance the
query load.

WebDam (INRIA) Distributed Indexing May 15, 2010 29 / 60



Tree-based approaches

Routing tables

Each node stores routing tables, that consist of:

1 parent, left child and right child addresses;

2 previous and next adjacent nodes in in-order traversal;

3 left and right routing tables, that reference nodes at the same level
and at position pos +/−2i , i = 0,1,2, . . ..

Ideas

1 the amount of replication is limited (each node knows a number of
“friends" which is logarithmic in the total number of nodes)

2 each node knows better the nodes which are close, than nodes which
are far.

WebDam (INRIA) Distributed Indexing May 15, 2010 30 / 60



Tree-based approaches

Routing tables: example
The left routing table (blue edges) refers to nodes at respective positions
6−20 = 5, 6−21 = 4, and 6−22 = 2.

a

b

d

h i
2

e

j k
4

p q

c

f

l
5

m
6

g

n o ← level 3

r s

Note that the gaps between two friends fi and fi+1 gets larger as i
increases (2i+1−2i = 2i).
The number of friends is logN, N being the number of nodes in the
considered level.

WebDam (INRIA) Distributed Indexing May 15, 2010 31 / 60



Tree-based approaches

The routing table of node m

Node m must maintain the following information

Node m – level: 3 – pos: 6
Parent: f – Lchild: null – Rchild: null
Left adj.: f – Right adj.: c

Left routing table
i node left right range
0 l null null [lmin, lmax ]
1 k p q [kmin,kmax ]
2 i null null [imin, imax ]

Right routing table
i node left right range
0 n null null [nmin,nmax ]
1 o s t [omin,omax ]

⇒ heavy work when something changes in the network.

WebDam (INRIA) Distributed Indexing May 15, 2010 32 / 60



Tree-based approaches

Search operations

A search(k) request is sent by a Client node to any peer p in the structure.
Two steps:

(horizontal) p looks in its routing table for a node p′ at the same level
that covers k
→ p′ is not a friend of p? then there is a friend of p that knows p′

better than p.

(top-down) from p′, a standard top-down path is followed.

Procedure: p chooses the farthest friends p” whose lower bound is smaller
than k

Search space halved at each step ⇒ ensures that p′ is found after at most
logN iterations.

WebDam (INRIA) Distributed Indexing May 15, 2010 33 / 60



Tree-based approaches

Example of search

Assume a request sent to node j for a key that belongs to node r

a

b

d

h i

e

j k
4

p q

c

f

l
5

m

g

n
7

o

r s

Blue edges: the (right) friends of j ; so j must forward the request to n, its
farthest friends whose lower bound is smaller than k .

WebDam (INRIA) Distributed Indexing May 15, 2010 34 / 60



Tree-based approaches

Example of search

Now n looks in its own routing table to forward the search.

a

b

d

h i

e

j k
4

p q

c

f

l
5

m

g

n
7

o

r s

n knows this part of the tree better than j : it finds o, the ancestor of r ,
and a downward path is then initiated.

WebDam (INRIA) Distributed Indexing May 15, 2010 34 / 60



Tree-based approaches

Case study 2: Bigtable

Can be seen as a distributed map structure, with features taken from
B-trees, and from non-dense indexed files.

Context: very different from Baton.

a controlled environment, with homogeneous servers located in a Data
Center;

a stable organization, with long-term storage of large structured data;

a data model (column-oriented tables with versioning)

Design: very different as well

close to e B-tree, with large capacity leaves

scalability is achieved by a cache maintained by Client nodes.

WebDam (INRIA) Distributed Indexing May 15, 2010 35 / 60



Tree-based approaches

Overview of Bigtable structure
Leaf level: a “table” organized in “rows” indexed by a key. Rows are stored
in lexicographic order on the key values.

The table is partitioned in “tablets”, and tablets are indexed by upper levels.

Full tablets are split, with upward adjustment.

WebDam (INRIA) Distributed Indexing May 15, 2010 36 / 60



Tree-based approaches

Architecture: one Master - many Servers
The Master maintains the root node and carries out administrative tasks.

Scalability is obtained with Client cache that stores a (possibly outdated)
image of the tree.

WebDam (INRIA) Distributed Indexing May 15, 2010 37 / 60



Tree-based approaches

Example of an out-of-range request followed by an
adjutment
A Client request may fail, due to an out-of-date image of the tree.

An adjustment requires at most height(Tree) rounds of messages.
WebDam (INRIA) Distributed Indexing May 15, 2010 38 / 60



Tree-based approaches

Persistence management in Bigtable

Problem: how can we maintain the sorted structure of tablets?

WebDam (INRIA) Distributed Indexing May 15, 2010 39 / 60



Tree-based approaches

Distributed indexing: what you should remember

Key point: Scalability. No single point of failure; even load distribution
over all the nodes. Technical means:

Distribute (and maintain) routing information.
⇒ trade-off between maintenance cost and operations cost.

Cache an image of the structure (e.g., in the Client).
⇒ design a convergence protocol if the image gets outdated.

Key point: availability. Use replication and monitor the system. Issues:

Synchronous replication is costly: choose between strong consistency
and strong availability.
⇒ design a conflict resolution protocol in case of weak consistency.

Always be ready to face a failure somewhere.
⇒ location of replica shoud make a quick restart easy.

WebDam (INRIA) Distributed Indexing May 15, 2010 40 / 60



Distributed Computing with MapReduce

Outline

1 Introduction

2 Overview of distributed data management principles

3 Distributed indexing

4 Hash-based approaches

5 Tree-based approaches

6 Distributed Computing with MapReduce

WebDam (INRIA) Distributed Indexing May 15, 2010 41 / 60



Distributed Computing with MapReduce

History and development of MapReduce

Published by Google Labs in 2004 at OSDI [DG04]. Implemented in
Hadoop, widely used (Yahoo!, Amazon EC2).

A programming model (inspired by standard functional programming
operators) to facilitate the development and execution of distributed tasks.

Main idea: “push the program near the data”. The programmer defines two
functions; MapReduce takes in charge distribution aspects.

WebDam (INRIA) Distributed Indexing May 15, 2010 42 / 60



Distributed Computing with MapReduce

The programming model of MapReduce

Used to process data flows of (key ,value) pairs.

1 map() takes as input a list of pairs (k ,v) ∈ K1×V1 and produces (for
each pair), another list of pairs (k ′,v ′) ∈ K2×V2, called intermediate
pairs.
Example: take a pair (uri ,document), produce list of pairs
(term,count)

2 (shuffle) the MapReduce execution environment groups intermediate
pairs on the key, and produces grouped instances of type (K2, list(V2))
Example: intermediate pairs for term ’job’ are grouped as
(′job′,< 1,4,2,8 >)

3 reduce() operates on grouped instances of intermediate pairs
(k ′1,< v ′1, · · · ,v

′

p , · · · ,v ′q , · · ·>); Each instance processed by the
procedure outputs a result, usually a single value v ′′.
Example: take a grouped instance (′job′,< 1,4,2,8 >) and output the
sum: 15

WebDam (INRIA) Distributed Indexing May 15, 2010 43 / 60



Distributed Computing with MapReduce

Job workflow in MapReduce

Important: each pair, at each phase, is processed independently from the
other pairs.

Network and distribution are transparently managed by MapReduce.

WebDam (INRIA) Distributed Indexing May 15, 2010 44 / 60



Distributed Computing with MapReduce

Example: Counting terms occurrences in documents

The map() function:

mapCW(String key , String value):

// key: document name

// value: document contents

for each term t in value:

return (t, 1);

Note: we do not even need to count the occurrences of t in value.

WebDam (INRIA) Distributed Indexing May 15, 2010 45 / 60



Distributed Computing with MapReduce

Counting terms occurrences in documents (cont’)

The reduce() function. It takes as input a grouped instance on a key . The
nested list can be scanned with an iterator.

reduceCW(String key , Iterator values ):

// key: a term

// values: a list of counts

int result = 0;

// Loop on the values list; cumulate in result

for each v in values:

result += v;

// Send the result

return result;

And, finally, the Job Driver program which submits both functions.

WebDam (INRIA) Distributed Indexing May 15, 2010 46 / 60



Distributed Computing with MapReduce

// A specification object for MapReduce execution

MapReduceSpecification spec;

// Define input files

MapReduceInput* input = spec.add_input();

input ->set_filepattern("/movies /*.xml");

input ->set_mapper_class("MapWC");

// Specify the output files:

MapReduceOutput* out = spec.output ();

out ->set_filebase("/gfs/freq");

out ->set_num_tasks(100);

out ->set_reducer_class("ReduceWC");

// Now run it

MapReduceResult result;

if (! MapReduce(spec , &result )) abort();

// Done: ’result ’ structure contains result info

return 0;

WebDam (INRIA) Distributed Indexing May 15, 2010 47 / 60



Distributed Computing with MapReduce

Processing map() and reduce() as a MapReduce job.

A MapReduce job takes care of the distribution, synchronization and failure
handling. Specifically:

the input is split in M groups; each group is assigned to a mapper
(assignment is based on the data locality principle);

each mapper processes a group and stores the intermediate pairs
locally;

grouped instances are assigned to reducers thanks to a hash function.

(Shuffle) intermediate pairs are sorted on their key by the reducer;

one obtains grouped instances, submitted to the reduce() function;

NB: the data locality does no longer hold for the Reduce phase, since it
reads from the mappers.

WebDam (INRIA) Distributed Indexing May 15, 2010 48 / 60



Distributed Computing with MapReduce

Distributed execution of a MapReduce job.

WebDam (INRIA) Distributed Indexing May 15, 2010 49 / 60



Distributed Computing with MapReduce

Failure management

In a distributed setting, the specific job handled by a machine is only a
minor part of the overall computing task.

Moreover, because the task is distributed on hundreds or thousands of
machines, the chances that a problems occurs somewhere are much larger;
starting the job from the beginning is not a valid option.

The Master periodically checks the availability and reacheability of the
“Workers”

1 if a reducer fails, its task may be reassigned;

2 if a mapper fails, its task must be started from scratch, even in the
Reduce phase (it holds intermediate groups).

3 if the Master fails? Then the whole job should be re-initiated.

WebDam (INRIA) Distributed Indexing May 15, 2010 50 / 60



Distributed Computing with MapReduce

Pig Latin

Motivation: define high-level languages that use MapReduce as an
underlying data processor.

A Pig Latin statement is an operator that takes a relation as input and
produces another relation as output.

Pig Latin statements are generally organized in the following manner:

1 A LOAD statement reads data from the file system as a relation (list
of tuples).

2 A series of "transformation" statements process the data.

3 A STORE statement writes output to the file system; or, a DUMP

statement displays output to the screen.

Statements are executed as composition of MapReduce jobs.

WebDam (INRIA) Distributed Indexing May 15, 2010 51 / 60



Distributed Computing with MapReduce

An example

Example: load file from meteo sensors; compute the maximal temperature
by year

-- Load files as a relation

records = LOAD ’meteo.txt ’

AS (year: char , temperature: int , quality: int);

filtered_records = FILTER RECORD

BY quality = 1 OR quality = 4;

grouped_records = GROUP filtered_records BY year;

max_temp = FOREACH grouped_records GENERATE group ,

MAX (filtered_records.temperature);

DUMP max_temp;

WebDam (INRIA) Distributed Indexing May 15, 2010 52 / 60



Distributed Computing with MapReduce

What you should remember on distr. computing

MapReduce is a simple model for batch processing of very large collections.
⇒ good for data analytics; not good for point queries (high latency).

The systems brings robustness against failure of a component and
transparent distribution.
⇒ more expressive languages required (Pig); could MapReduce be used as
an infrastructure for very large scale database distribution (e.g.,
HadoopDB)?

Parallel databases exist for a long time (TeraData); they use distribution
for scalability.

WebDam (INRIA) Distributed Indexing May 15, 2010 53 / 60



Distributed Computing with MapReduce

Overview of existing systems

Google File System (GFS). Distr. storage for very large, unstructured
files. Open-source: HDFS (Hadoop)

Dynamo. Internal data store of Amazon. Open source: Voldemort
project.

Bigtable, sorted distributed storage. Open source: HTable (Hadoop).

Amazon proposes a Cloud environment, EC2, with: S3 and
Hadoop/MapReduce.

WebDam (INRIA) Distributed Indexing May 15, 2010 54 / 60



Distributed Computing with MapReduce

The end!

For references, slides, and some public chapters of the book:

http://webdam.inria.fr/textbook

WebDam (INRIA) Distributed Indexing May 15, 2010 55 / 60



Processing the WordCount() example (1)

Let the input consists of documents, say, one million 100-terms documents
of approximately 1 KB each.

The split operation distributes these documents in groups of 64 MBs: each
group consist of 64,000 documents. Therefore
M : ⌈1,000,000/64,000⌉ ≈ 16,000 groups.

We assume a global count of 1,000 distinct terms in the chunk; the (local)
Map phase produces 6,400,000 pairs (t,c).

Let hash(t) = t mod 1,000. Each intermediate group i ,0≤ i < 1000
contains 6,400 pairs, each with 6-7 distinct terms t such that hash(t) = i .

WebDam (INRIA) Distributed Indexing May 15, 2010 56 / 60



Processing the WordCount() example (2)

Assume that hash(’call’) = hash(’mine’) = hash(’blog’) = i = 100. We
focus on three Mappers Mp, Mq and M r :

1 Gp
i =(<. . . , (’mine’, 1), . . . , (’call’,1), . . . , (’mine’,1), . . . , (’blog’, 1)

. . . >

2 Gq
i =(< . . . , (’call’,1), . . . , (’blog’,1), . . . >

3 G r
i =(<. . . , (’blog’, 1), . . . , (’mine’,1), . . . , (’blog’,1), . . . >

Ri reads Gp
i , Gp

i and Gp
i from the three Mappers, sorts their unioned

content, and groups the pairs with a common key:

. . . , (’blog’, <1, 1, 1, 1>), . . . , (’call’, <1, 1>), . . . , (’mine’, <1, 1, 1>)

Our reduceWC () function is then applied by Ri to each element of this list.
The output is (’blog’, 4), (’call’, 2) and (’mine’, 3).

WebDam (INRIA) Distributed Indexing May 15, 2010 57 / 60



Amazon’s Elastic MapReduce

Relies on Hadoop running on the web-scale infrastructure of Amazon EC2
– uses Amazon S3 for distributed storage.
aws-mrjob

WebDam (INRIA) Distributed Indexing May 15, 2010 58 / 60

aws-mrjob


References

Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin, and Avi Silberschatz.

HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads.
Proceedings of the VLDB Endowment (PVLDB), 2(1):922–933, 2009.

Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and Douglas Stott Parker Jr.

Map-reduce-merge: simplified relational data processing on large clusters.
In SIGMOD, pages 1029–1040, 2007.

Jeffrey Dean and Sanjay Ghemawat.

MapReduce: Simplified Data Processing on Large Clusters.
In Intl. Symp. on Operating System Design and Implementation (OSDI), pages 137–150, 2004.

Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan Narayanam, Christopher Olston,

Benjamin Reed, Santhosh Srinivasan, and Utkarsh Srivastava.
Building a HighLevel Dataflow System on top of MapReduce: The Pig Experience.
Proceedings of the VLDB Endowment (PVLDB), 2(2):1414–1425, 2009.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu,

Pete Wyckoff, and Raghotham Murthy.
Hive - A Warehousing Solution Over a Map-Reduce Framework.
Proceedings of the VLDB Endowment (PVLDB), 2(2):1626–1629, 2009.

WebDam (INRIA) Distributed Indexing May 15, 2010 59 / 60


	Introduction
	Overview of distributed data management principles
	Distributed indexing
	Hash-based approaches
	Tree-based approaches
	Distributed Computing with MapReduce
	Appendix

