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This chapter proposes an introduction to recommendation techniques and suggests some
exercises and projects. We do not present a recommendation system in particular but rather
focus on the general methodology. As an illustrative example, we will use the MovieLens
data set to construct movie recommendations.

The chapter successively introduces recommendation, user-based collaborative filtering
and item-based collaborative filtering. It discusses different methods parameterizations and
evaluates their result with respect to the quality of the data set. We show how to generate
recommendations using SQL queries on the MovieLens data set. Finally, we suggest some
projects for students who want to investigate further the realm of recommendation systems.

1 Introduction to recommendation systems

Given a set of ratings of items by a set of users, a recommendation system produces a list of
items for a particular user, possibly in a given context. Such systems are widely used in Web
applications. For example, content sites like Yahoo! Movies (movies), Zagat (restaurants),
LibraryThing (books), Pandora (music), StumbleUpon (website) suggest a list of items of
interest by predicting the ratings of their users. E-commerce sites such as Amazon (books) or
Netflix (movies) use recommendations to suggest new products to their users and construct
bundle sales. Usually, they exploit the recent browsing history as a limited context. Finally,
advertisement companies need to find a list of advertisements targeted for their users. Some
of them, like Google AdSense, rely more on the context (e.g., keywords) than on an estimation
of the user’s taste based on her/his recent browsing history. Nevertheless, techniques close
to recommendation methodologies are successfully used, for example, by DoubleClick or
Facebook ads.

One usually distinguishes two kinds of tasks on data: information retrieval and infor-
mation filtering. Information retrieval is the problem of answering dynamic queries on static
content. Typical examples are answering keyword queries on the Web or SQL queries on a
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database. The general method relies on data modeling, providing structure and semantics to
the data, that is then organized using indexes. Information filtering is the problem of answering
static queries on dynamic content. A typical example is the monitoring of Web server logs.
The general method is to model the queries, which are then organized as filters. Under this
general perspective, recommendation stands between information retrieval and information
filtering: data (the set of ratings) varies slowly at the scale of a user but quickly at the scale of
the system; queries (a user and possibly some context) depend on a few parameters, each
having a wide domain.

Specifically, a recommendation system may either produce top-k ranking (list of “best”
items) or prediction of ratings. The focus of the result may be generic (everyone receives
the same recommendations), demographic (everyone in the same category receives the same
recommendations) or personal. In the present chapter, we are mostly interested in personal
recommendation. The context may rely on the user’s current activity or on her/his long-term
interests

The information that serves as a basis to recommendation systems consists of the following
components:

1. the users’ description (e.g., sex, age, localization, profession of the user);

2. the items’ description (e.g., genre, author, date, price of the item);

3. and the ratings matrix, giving the rating of each item by each user.

The ratings matrix is incomplete, being fed only by either acquiring data from the user
(e.g., an item is bought, or a level of interest is explicitly collected), or by monitoring her/his
activity (an item is visited, which gives some hint on the user’s interests). Recommendation
is indeed the process of filling empty cells of the matrix with predicted ratings derived from
the other sources of information, including known ratings.

2 Pre-requisites

This chapter uses SQL: we assume the reader familiar with the language. You will need
access to a relational database, for example by installing MYSQL on your computer: see
http://www.mysql.com. Here is a very brief introduction to MYSQL commands (refer to
the Web for information on any other SQL database systems). Assuming that you have an
account on the MYSQL server, the connection is established with:

mysql -h [servername] -P [port] -u [login] -p

The utility asks for your passwords and gives you access to the command-line interpreter.
You may directly type SQL commands, or execute command(s) stored in a file myCom.sql:

mysql> source myCom.sql;

We will play with the MovieLens (http://www.movielens.org) data set to generate
recommendations of movies. The data set must first be imported in your database. Create the
following tables and indexes (the SQL scripts can be found on the book’s site):
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# Tables creation
c r e a t e table ratingsdata (

userid int ,
itemid int ,
rating int ,
timestamp int ,
primary key (userid, itemid));

c r e a t e table items (
itemid i n t primary key,
title tex t ,
date tex t ,
videodate tex t ,
imdb tex t ,
unknown boolean,
action boolean,
adventure boolean,
animation boolean,
childrens boolean,
comedy boolean,
crime boolean,
documentary boolean,
drama boolean,
fantasy boolean,
noir boolean,
horror boolean,
musical boolean,
mystery boolean,
romance boolean,
scifi boolean,
thriller boolean,
war boolean,
western boolean);

c r e a t e table users (
userid i n t primary key,
age int ,
gender char,
occupation tex t ,
zip i n t);

# Indexes creation
c r e a t e index usersdata_index on ratingsdata (userid);
c r e a t e index itemsdata_index on ratingsdata (itemid);

You can get the MovieLens 100K Ratings data set from http://www.grouplens.org/
node/73. The files are respectively named u.data, u.item, and u.user. They are loaded
in the database as follows

load data i n f i l e ’[path to u.data]’ into table ratingsdata;
load data i n f i l e ’[path to u.item]’ into table items fields
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terminated by ’|’;
load data i n f i l e ’[path to u.user]’ into table users fields

terminated by ’|’;

Table ratingsdata table now contains the list of ratings. Most of the computation
presented further rely on its content. Table items and users contain respectively the list of
movies and the list of users.

3 Data analysis

The quality of a given recommendation method highly depends on the quality of the input.
It can be characterized by the support (number of users and items, and distribution of the
number of ratings by users and by items) and by the rating quality (distribution of the ratings
by user and by movies). Let us consider the support first, which can be determined by the
following SQL commands:

• number of users, movies and ratings;

s e l e c t count(d i s t i n c t userid) as nbusers,
count(d i s t i n c t itemid) as nbitems, count(*) as nbratings

from ratingsdata;

• distribution of the number of ratings by user (histogram rounded to a precision of 10
ratings);

s e l e c t count(userid) as nbusers, nbratings
from ( s e l e c t round(count(itemid)/10,0)*10 as nbratings, userid

from ratingsdata
group by userid

) as nbratingsbyusers
group by nbratings
order by nbratings desc;

• distribution of the number of ratings by movies (histogram rounded to 10 ratings).

s e l e c t count(itemid) as nbitems, nbratings
from ( s e l e c t round(count(userid)/10,0)*10 as nbratings, itemid

from ratingsdata
group by itemid

) as nbratingsbyitems
group by nbratings
order by nbratings desc;

1. Run the queries and examine the result. Note first that there is no user with less than
20 ratings, since such users have already been filtered out by MoviesLens. However,
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one can find some movies with very few ratings. Recommending an item with a small
support yields unreliable results. The problem is known as “cold-start” in the area of
recommendation system, and is difficult to solve: we will not elaborate further on this
aspect.

2. Can you determine the law followed by these distributions? This law is frequently
observed in practice, and means that a few users are very productive and a few items
are very famous, while the huge majority of items are hardly rated by any user. A good
recommendation method should avoid giving more importance to items or users based
on their number of ratings, since quantity does not always implies quality.

We now examine the quality of the ratings with the following SQL queries:

• average rating

s e l e c t avg(rating) as avgrating
from ratingsdata;

• ratings distribution

s e l e c t count(*) as nbratings, rating
from ratingsdata
group by rating
order by rating desc;

• distribution of the average ratings by users (histogram rounded to 0.1)

s e l e c t count(userid) as nbusers, avgrating
from ( s e l e c t round(avg(rating),1) as avgrating, userid

from ratingsdata
group by userid

) as avgratingbyusers
group by avgrating
order by avgrating desc;

• distribution of the average ratings by movies (histogram rounded to 0.1)

s e l e c t count(itemid) as nbitems, avgrating
from ( s e l e c t round(avg(rating),1) as avgrating, itemid

from ratingsdata
group by itemid

) as avgratingbyitems
group by avgrating
order by avgrating desc;
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Run the queries and examine the result. Can you determine the distribution law? What
happens regarding the distribution of the average ratings by movies, compared to the natural
expectation? Try to figure out what would be the normal curve for such an application, and
explain the “picks” associated to each rounded rating. Also note the curve behavior for
extreme values, and provide an explanation. Finally note that the distribution of ratings is
not centered. Why?

As for most data analysis tasks, raw data has to be cleaned up during a preprocessing
step. We will limit ourselves to the centering of the ratings distribution. This normalization
makes easier the comparison of the users’ behavior. A more involved normalization would,
among others, also correct the standard deviation. This is left as an exercise. The centering is
obtained by the following query:

c r e a t e table ratings (
userid int ,
itemid int ,
rating int ,
timestamp int ,
primary key (userid, itemid));

c r e a t e index usersratings_index on ratings (userid);
c r e a t e index itemsratings_index on ratings (itemid);
i n s e r t into ratings (userid,itemid,rating,timestamp)

( s e l e c t ratingsdata.userid, ratingsdata.itemid,
ratingsdata.rating-avgratingbyusers.avgrating,
ratingsdata.timestamp

from ratingsdata,
( s e l e c t userid, avg(rating)

from ratingsdata
group by userid

) as avgratingbyusers
where ratingsdata.userid=avgratingbyusers.userid

);

4 Generating some recommendations

4.1 Global recommendation

Global recommendation roughly retrieves the movies with the best average rating. The query
is straightforward:

s e l e c t title, avgrating, nbratings
from items,

( s e l e c t round(avg(rating),1) as avgrating,
count(userid) as nbratings, itemid

from ratings
group by itemid
order by avgrating desc
l i m i t 10

) as avgratingbyitems
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where items.itemid = avgratingbyitems.itemid
order by avgrating desc;

If you carefully look at the result, you should observe that items with the best average
ratings are those with a very small support (only a few ratings are known). This is a classic
problem in statistics: an estimation of the average cannot be accurate if the support is too small.
Problems related to the low quality of the support are very common in recommendation. In
practice, a safe rule is to base any estimation on at least ten measurements. How can you
correct the query to obtain a better result? Write and run the corrected query.

The next query retrieves the 40 movies with the largest number of ratings.

s e l e c t title, items.itemid, avgrating, nbratings
from items,

( s e l e c t round(avg(rating),1) as avgrating,
count(userid) as nbratings, itemid

from ratings
group by itemid
order by nbratings desc
l i m i t 40

) as avgratingbyitems
where items.itemid = avgratingbyitems.itemid
order by nbratings desc;

Pick 20 of those movies (if possible those you know) and give them a rating using the
command:

c r e a t e table me (
itemid i n t primary key,
rating i n t);

i n s e r t into me values (id1,rating1), (id2,rating2), ... (id20,rating20);

You may want to check your updates with:

s e l e c t title, me.itemid, rating
from me, items
where me.itemid=items.itemid;

We will use this table to compute some movie recommendations for you. Keep in mind
that in a real recommendation system, one has to find recommendation for every user, so
scaling is a real issue.

4.2 User-based collaborative filtering

The collaborative filtering class of methods focuses on the ratings matrix and ignores the users
or items description. It usually proceeds in two steps: first the correlation step determines a
similarity between users (for the user-based approach) or between items (item-based), then
the aggregation step predicts new rating from this similarity information.
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user users ratingscorrelation aggregation

Figure 1: User-based collaborative filtering

In the case of user-based collaborative filtering (Figure 1), the correlation between a pair
of users is computed by comparing their ratings. For simplicity (and efficiency), we only
compute the correlation between you and all the other users. Then the ratings of these users
for a given item are aggregated to predict the rating of the initial user for this item.

4.2.1 Correlation

There exist several possible measures of correlations. Let Ui be the vector of ratings of user ui
(seen as a line), then

• the scalar product similarity is:

sim(uj,ul) = Uj
tUl

• the cosine similarity is:

sim(uj,ul) =
Uj

tUl

‖Uj‖‖Ul‖

The cosine correlation is obtained by the following query:

s e l e c t distances.userid as userid, dist/(sqrt(my.norm)*sqrt(users.norm))
as score

from ( s e l e c t userid, sum((me.rating)*(ratings.rating)) as dist
from ratings, me
where me.itemid = ratings.itemid
group by userid

) as distances,
( s e l e c t userid, sum((rating)*(rating)) as norm

from ratings
group by userid

) as users,
( s e l e c t sum((rating)*(rating)) as norm

from me
) as my

where users.userid = distances.userid
order by score desc
l i m i t 30;

You can compare the ratings of user ui to yours with the following query:

s e l e c t me.itemid as itemid, me.rating as myrating,
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ratings.rating as herrating
from ratings, me
where userid=ui and ratings.itemid=me.itemid
order by me.itemid;

You should observe that the estimation of the correlation is not accurate for pairs of users
with a small support (i.e., users who rated only a few common items). How can you modify
the correlation formula to take the support into account? You should in particular try the
other formula suggested above. This should lead to the conclusion that there is a trade-off
regarding the support: giving too much weight to the support may bias the result toward
popular items, whereas simply ignoring it leads to a bad estimation quality.

We used the normalized table in the SQL commands. What could happen if we had used
the initial, non-normalized data?

We keep the correlated users whose behavior is close to yours, into the sim table, using
the following command:

c r e a t e table sim (
userid i n t primary key,
score double);

i n s e r t into sim (userid,score)
( s e l e c t ...)

4.2.2 Recommendation

Let r̂(ui, ik) be the rating prediction of user ui and item ik and let St(ui) be the user highly
correlated with ui (the users that you put in the sim table). The following formula represent
some possible ways of computing aggregated values:

• Means on the best users (the rating of a user for an item is considered to be equal to 0 if
it does not exist in the rating matrix).

r̂(uj, ik) =
1

|St(uj)| ∑
ul∈St(uj)

r(ul , ik)

• Weighted average on the best users.

r̂(uj, ik) =
∑ul∈St(uj) sim(uj,ul)r(ul , ik)

∑ul∈St(uj) sim(uj,ul)

The means aggregation is obtained by:

s e l e c t title, items.itemid, score, nbratings
from items,

( s e l e c t itemid, sum(ratings.rating)/simsize.size as score,
count(sim.userid) as nbratings

from sim, ratings,
( s e l e c t count(*) as size from sim) as simsize
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where sim.userid= ratings.userid
group by itemid
order by score desc
l i m i t 10

) as itemscores
where items.itemid = itemscores.itemid
order by score desc;

You probably want to remove the movies that you already know by adding the following
filter to the where clause:

and itemid not in ( s e l e c t itemid from me)

You may also want to see the movies you probably dislike, replacing desc by asc in the
previous command.

1. We used the normalized table. What may happen if you use the raw data?

2. You may have already observed that we kept only the 30 closest users. Try a different
number as intermediate seeds (clean first the sim table with delete from sim;).
Usually, the choice of St(ui) is very sensitive. If you are too selective, you get results
with very small support (few aggregated ratings by items), and a bad estimation. If you
are not selective enough, you get results very close to the global recommendation (the
majority wins), and thus a bad precision. This is another illustration of the concerns
related to the support: there is a trade-off between sparsity (bad estimation) and noise
(bad precision).

3. To soften the previous problem, one may try to estimate the quality of the correlation.
For example, try the weighted average (or even a quadratic weight). Try also to use a
threshold on the value of the correlation

4.3 Item-based collaborative filtering

item items ratingscorrelation aggregation

Figure 2: Item-based collaborative filtering

For item-based collaborative filtering (Figure 2), we compute the correlation between any
pairs of items by comparing their ratings. We then aggregate the ratings of a user for these
items to predict the rating of this user for the initial item. To avoid too much computation
time, you may only compute the correlation between all items and yours. Let Ik be the vector
of ratings of item ik (seen as a column). You may use:

sim(il , ik) =
tIl Ik
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r̂(uj, ik) =
1

|St(ik)| ∑
il∈St(ik)

r(uj, il)

1. How can you rewrite the previous queries to do item-based collaborative filtering?

2. What is usually the benefit of using item-based collaborative filtering instead of user-
based collaborative filtering, from the support point of view? In particular, what changes
if some attacker in the system attempts to improve the recommendation of some items
by adding new ratings?

5 Projects

The following projects outline some suggestions to extend the basic recommendation scheme
presented above.

5.1 Scaling

So far, we limited the computation to recommendations for a single user. In general, recom-
mendation systems attempt to provide recommendations to every of their users. Several
methods can be envisaged to achieve scalability:

1. distribution,

2. clustering methods to group similar users and similar items,

3. or by reducing the dimension on the ratings matrix.

Any of these methods can be used as a starting point for a project aiming at scalable
computation of the recommendations. Distribution is a suitable objective if you wish to
investigate in the context of a practical project some of the main techniques described in
the book. You could for instance design and experiment the computation of the correlation
and aggregation indicators with the MAPREDUCE paradigm, taking the opportunity of
implementing your functions in one of the systems that we present in other Putting into
Practice chapters (e.g., HADOOP or COUCHDB).

5.2 The probabilistic way

Some recommendation methods are fully based on a probabilistic model. In general, they
consist in choosing a probabilistic model of generation (e.g., using Markov Chains), followed
by an estimation of the model parameters (e.g., using Expectation Maximization). The
project can be conducted by finding academic references to model-based recommendation.
You should then choose a probabilistic model of generation and use the standard statistics
methods to estimate the ratings.
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5.3 Improving recommendation

Many refinements can improve the recommendations obtained by the basic methods pre-
sented here. In particular, in some cases, content filtering, i.e., prediction of ratings given the
description of items and users, provides some useful additional information. The description
can also be used to increase diversity. For example, one may look for the list of items that
maximize the sum of aggregated ratings under the constraint that the elements do not share
all their attributes. The description of users and items are respectively in the files u.user
and u.item of the MovieLens database. The imdb field of the item table can be used to get
more attributes from the IMDB database.

Another standard improvement is to manage more precisely serendipity, i.e., to suggest
items that are more risked. It may happen for instance that an item has been rated by only
few users. If it turns out that all of them are enthusiastic, it may be worth proposing the
item even if the support is low. For example, in user-based collaborative filtering the first
aggregation function can be modified to base the means only on users who have produced
ratings. It yields the same problem of trade-off between sparsity and noise

Taking context into account to filter the recommendation results is another interesting
issue. For example, one may try to produce a recommendation for a given bag of keywords
looked up in the attributes of the items. Explanation is another direction of improvement
of recommendation (i.e., help the user to understand why s/he got this recommendation).
The cold start problem (users or items with very few ratings) is also an important topic of
research and can be easily experimented. Recommendation can benefit from interacting with
the user to modify the recommendation process based on feedback. Finally, one may try to
recommend to a group of users instead of a single user.

The project will try to improve the recommendation in some of these directions.
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