
XML Storage and Indexing
Web Data Management and Distribution

Serge Abiteboul Ioana Manolescu Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution
http://webdam.inria.fr/textbook

September 29, 2011

WebDam (INRIA) XML Storage and Indexing September 29, 2011 1 / 26

Introduction

Outline

1 Introduction

2 XML fragmentation

3 XML identifiers

WebDam (INRIA) XML Storage and Indexing September 29, 2011 2 / 26

Introduction

Motivation

PTIME algorithms for evaluating XPath queries:
I Simple tree navigation
I Translation into logic
I Tree-automata techniques

These techniques assume XML data in memory

Very large XML documents: what is critical is the number of disk accesses

WebDam (INRIA) XML Storage and Indexing September 29, 2011 3 / 26

Introduction

Naïve page-based storage

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

WebDam (INRIA) XML Storage and Indexing September 29, 2011 4 / 26

Introduction

Processing Simple Paths

/auctions/item requires the traversal of two disk pages;

/auctions/item/description and
/auctions/open_auctions/auction/initial
both require traversing three disk pages;

//initial requires traversing all the pages of the document.

WebDam (INRIA) XML Storage and Indexing September 29, 2011 5 / 26

Introduction

Remedies

Smart fragmentation. Group nodes that are often accessed simultaneously, so
that the number of pages that need to be accessed is globally
reduced.

Rich node identifiers. Sophisticated node identifiers reducing the cost of join
operations.

WebDam (INRIA) XML Storage and Indexing September 29, 2011 6 / 26

XML fragmentation

Outline

1 Introduction

2 XML fragmentation
Tag-partitioning
Path-partitioning

3 XML identifiers

WebDam (INRIA) XML Storage and Indexing September 29, 2011 7 / 26

XML fragmentation

Simple node identifiers

1

2 3 4

5

6

7

8 9

10 11 12 13

14 15

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

WebDam (INRIA) XML Storage and Indexing September 29, 2011 8 / 26

XML fragmentation

Partial instance of the Edge relation

pid cid clabel

- 1 auctions
1 2 item
2 5 comment
2 6 name
2 7 description
1 3 open_auctions
3 8 auction
· · · · · · · · ·

WebDam (INRIA) XML Storage and Indexing September 29, 2011 9 / 26

XML fragmentation

Processing XPath queries with simple IDs

//initial Direct index lookup.

πcid (σclabel=initial(Edge))

/auctions/item A join is needed.

πcid((σclabel=auctions(Edge)) ./cid=pid (σclabel=item(Edge)))

//auction//bid Unbounded number of joins!

//auction/bid πcid (A ./cid=pid B)
//auction/*/bid πcid (A ./cid=pid Edge ./cid=pid B)
//auction/*/*/bid · · ·

WebDam (INRIA) XML Storage and Indexing September 29, 2011 10 / 26

XML fragmentation Tag-partitioning

Outline

1 Introduction

2 XML fragmentation
Tag-partitioning
Path-partitioning

3 XML identifiers

WebDam (INRIA) XML Storage and Indexing September 29, 2011 11 / 26

XML fragmentation Tag-partitioning

Tag-partitioned Edge relations

auctionsEdge

pid cid

- 1

itemEdge

pid cid

1 2
1 4

open_auctionsEdge

pid cid

1 3

auctionEdge

pid cid

3 8
3 9

Reduces the disk I/O needed to retrieve the identifiers of elements having a
given tag. Partitioning of queries with // steps in non-leading position remains
as difficult as before.

WebDam (INRIA) XML Storage and Indexing September 29, 2011 12 / 26

XML fragmentation Path-partitioning

Outline

1 Introduction

2 XML fragmentation
Tag-partitioning
Path-partitioning

3 XML identifiers

WebDam (INRIA) XML Storage and Indexing September 29, 2011 13 / 26

XML fragmentation Path-partitioning

Path-partitioned storage

/auctions

pid cid

- 1

/auctions/item

pid cid

1 2
1 4

/auctions/item/name

pid cid

2 6
4 14

Paths

path

/auctions
/auctions/item
/auctions/item/comment
/auctions/item/name
· · ·

WebDam (INRIA) XML Storage and Indexing September 29, 2011 14 / 26

XML fragmentation Path-partitioning

Query evaluation using path partitioning

//item//bid can be evaluated in two steps:

Scan the path relation and identify all the parent-child paths matching the
given linear XPath query;

For each of the paths thus obtained, scan the corresponding
path-partitioned table.

Many branches still require joins across the relations.
For very structured data, the path relation is typically much smaller than the
data set itself. Thus, the cost of the first processing step is likely negligible, while
the performance benefits of avoiding numerous joins are quite important.

WebDam (INRIA) XML Storage and Indexing September 29, 2011 15 / 26

XML identifiers

Outline

1 Introduction

2 XML fragmentation

3 XML identifiers
Region-based identifiers
Dewey-based identifiers
Structural identifiers and updates

WebDam (INRIA) XML Storage and Indexing September 29, 2011 16 / 26

XML identifiers

Identifiers

Within a persistent XML store, each node must be assigned a unique identifier
(or ID, in short).
We want to encapsulate structure information into these identifiers to facilitate
query evaluation.

WebDam (INRIA) XML Storage and Indexing September 29, 2011 17 / 26

XML identifiers Region-based identifiers

Outline

1 Introduction

2 XML fragmentation

3 XML identifiers
Region-based identifiers
Dewey-based identifiers
Structural identifiers and updates

WebDam (INRIA) XML Storage and Indexing September 29, 2011 18 / 26

XML identifiers Region-based identifiers

Region-based identifiers

<a>

0

...

30

...

50

...

90

Offsets in the XML file

The so-called region-based identifier scheme simply assigns to each XML node
n, the pair composed of the offset of its begin tag, and the offset of its end tag.
We denote this pair by (n.begin,n.end).

the region-based identifier of the <a> element is the pair (0, 90);

the region-based identifier of the element is pair (30, 50).

WebDam (INRIA) XML Storage and Indexing September 29, 2011 19 / 26

XML identifiers Region-based identifiers

Using region-based identifiers

Comparing the region-based identifiers of two nodes n1 and n2 allows deciding
whether n1 is an ancestor of n2. Observe that this is the case if and only if:

n1.start < n2.start , and

n2.end < n1.end .

No need to use byte offset:

(Begin tag, end tag). Count only opening and closing tags (as one unit each)
and assign the resulting counter values to each element.

(Pre, post). Preorder and postorder index (see next slide).

(Pre, post, depth). The depth can be used to decide whether a node is a parent
of another one.

Region-based identifiers are quite compact, as their size only grows
logarithmically with the number of nodes in a document.

WebDam (INRIA) XML Storage and Indexing September 29, 2011 20 / 26

XML identifiers Region-based identifiers

(pre, post, depth) node identifiers

(1,15,1)

(2,4,2) (3,11,2) (4,14,2)

(5,1,3)

(6,2,3)

(7,3,3)

(8,7,3) (9,10,3)

(10,5,4) (11,6,4) (12,8,4) (13,9,4)

(14,12,3) (15,13,3)

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

WebDam (INRIA) XML Storage and Indexing September 29, 2011 21 / 26

XML identifiers Dewey-based identifiers

Outline

1 Introduction

2 XML fragmentation

3 XML identifiers
Region-based identifiers
Dewey-based identifiers
Structural identifiers and updates

WebDam (INRIA) XML Storage and Indexing September 29, 2011 22 / 26

XML identifiers Dewey-based identifiers

Dewey node identifiers

1

1.1 1.2 1.3

1.1.1

1.1.2

1.1.3

1.2.1 1.2.2

1.2.1.1 1.2.1.2 1.2.2.1 1.2.2.2

1.3.1 1.3.2

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

WebDam (INRIA) XML Storage and Indexing September 29, 2011 23 / 26

XML identifiers Dewey-based identifiers

Using Dewey identifiers

Ancestor decided by looking if an ID is a prefix of another one (largest
non-identical prefix for parent).

Possible to decide preceding-sibling, following-sibling, preceding, following.

Given two Dewey IDs n1 and n2, one can find the ID of the lowest common
ancestor (LCA) of the corresponding nodes. The ID of the LCA is the
longest common prefix of n1 and n2. Useful for keyword search.

Main drawback: length (large, variable) of the identifiers.

WebDam (INRIA) XML Storage and Indexing September 29, 2011 24 / 26

XML identifiers Structural identifiers and updates

Outline

1 Introduction

2 XML fragmentation

3 XML identifiers
Region-based identifiers
Dewey-based identifiers
Structural identifiers and updates

WebDam (INRIA) XML Storage and Indexing September 29, 2011 25 / 26

XML identifiers Structural identifiers and updates

Re-labeling

Consider a node with Dewey ID 1.2.2.3. Suppose we insert a new first child to
node 1.2. Then the ID of node 1.2.2.3 becomes 1.2.3.3.
In general:

Offset-based identifiers need to be updated as soon as a character is
inserted or removed in the document.

(start, end), (pre, post), Dewey IDs need to be updated when the elements
of the documents change.

Possible to avoid relabeling on deletions, but gaps will appear in the
labeling scheme.

Relabeling operation quite costly.

WebDam (INRIA) XML Storage and Indexing September 29, 2011 26 / 26

	Introduction
	XML fragmentation
	Tag-partitioning
	Path-partitioning

	XML identifiers
	Region-based identifiers
	Dewey-based identifiers
	Structural identifiers and updates

