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Introduction

Motivation

PTIME algorithms for evaluating XPath queries:
I Simple tree navigation
I Translation into logic
I Tree-automata techniques

These techniques assume XML data in memory

Very large XML documents: what is critical is the number of disk accesses
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Introduction

Naïve page-based storage
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Introduction

Processing Simple Paths

/auctions/item requires the traversal of two disk pages;

/auctions/item/description and
/auctions/open_auctions/auction/initial
both require traversing three disk pages;

//initial requires traversing all the pages of the document.
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Introduction

Remedies

Smart fragmentation. Group nodes that are often accessed simultaneously, so
that the number of pages that need to be accessed is globally
reduced.

Rich node identifiers. Sophisticated node identifiers reducing the cost of join
operations.
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XML fragmentation

Simple node identifiers
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XML fragmentation

Partial instance of the Edge relation

pid cid clabel

- 1 auctions
1 2 item
2 5 comment
2 6 name
2 7 description
1 3 open_auctions
3 8 auction
· · · · · · · · ·
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XML fragmentation

Processing XPath queries with simple IDs

//initial Direct index lookup.

πcid (σclabel=initial(Edge))

/auctions/item A join is needed.

πcid((σclabel=auctions(Edge)) ./cid=pid (σclabel=item(Edge)))

//auction//bid Unbounded number of joins!

//auction/bid πcid (A ./cid=pid B)
//auction/*/bid πcid (A ./cid=pid Edge ./cid=pid B)
//auction/*/*/bid · · ·
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XML fragmentation Tag-partitioning
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XML fragmentation Tag-partitioning

Tag-partitioned Edge relations

auctionsEdge

pid cid

- 1

itemEdge

pid cid
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open_auctionsEdge

pid cid
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auctionEdge

pid cid

3 8
3 9

Reduces the disk I/O needed to retrieve the identifiers of elements having a
given tag. Partitioning of queries with // steps in non-leading position remains
as difficult as before.
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XML fragmentation Path-partitioning
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XML fragmentation Path-partitioning

Path-partitioned storage
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Paths

path
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· · ·
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XML fragmentation Path-partitioning

Query evaluation using path partitioning

//item//bid can be evaluated in two steps:

Scan the path relation and identify all the parent-child paths matching the
given linear XPath query;

For each of the paths thus obtained, scan the corresponding
path-partitioned table.

Many branches still require joins across the relations.
For very structured data, the path relation is typically much smaller than the
data set itself. Thus, the cost of the first processing step is likely negligible, while
the performance benefits of avoiding numerous joins are quite important.
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XML identifiers

Identifiers

Within a persistent XML store, each node must be assigned a unique identifier
(or ID, in short).
We want to encapsulate structure information into these identifiers to facilitate
query evaluation.
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XML identifiers Region-based identifiers
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XML identifiers Region-based identifiers

Region-based identifiers

<a>

0

... <b>

30

... </b>

50

... </a>

90

Offsets in the XML file

The so-called region-based identifier scheme simply assigns to each XML node
n, the pair composed of the offset of its begin tag, and the offset of its end tag.
We denote this pair by (n.begin,n.end).

the region-based identifier of the <a> element is the pair (0, 90);

the region-based identifier of the <b> element is pair (30, 50).
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XML identifiers Region-based identifiers

Using region-based identifiers

Comparing the region-based identifiers of two nodes n1 and n2 allows deciding
whether n1 is an ancestor of n2. Observe that this is the case if and only if:

n1.start < n2.start , and

n2.end < n1.end .

No need to use byte offset:

(Begin tag, end tag). Count only opening and closing tags (as one unit each)
and assign the resulting counter values to each element.

(Pre, post). Preorder and postorder index (see next slide).

(Pre, post, depth). The depth can be used to decide whether a node is a parent
of another one.

Region-based identifiers are quite compact, as their size only grows
logarithmically with the number of nodes in a document.
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XML identifiers Region-based identifiers

(pre, post, depth) node identifiers
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XML identifiers Dewey-based identifiers

Dewey node identifiers
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XML identifiers Dewey-based identifiers

Using Dewey identifiers

Ancestor decided by looking if an ID is a prefix of another one (largest
non-identical prefix for parent).

Possible to decide preceding-sibling, following-sibling, preceding, following.

Given two Dewey IDs n1 and n2, one can find the ID of the lowest common
ancestor (LCA) of the corresponding nodes. The ID of the LCA is the
longest common prefix of n1 and n2. Useful for keyword search.

Main drawback: length (large, variable) of the identifiers.
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XML identifiers Structural identifiers and updates
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XML identifiers Structural identifiers and updates

Re-labeling

Consider a node with Dewey ID 1.2.2.3. Suppose we insert a new first child to
node 1.2. Then the ID of node 1.2.2.3 becomes 1.2.3.3.
In general:

Offset-based identifiers need to be updated as soon as a character is
inserted or removed in the document.

(start, end), (pre, post), Dewey IDs need to be updated when the elements
of the documents change.

Possible to avoid relabeling on deletions, but gaps will appear in the
labeling scheme.

Relabeling operation quite costly.
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