
Introduction to Distributed Data Systems

Serge Abiteboul Ioana Manolescu Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution
http://webdam.inria.fr/textbook

January 13, 2014

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 1 / 40



Introduction

Outline

1 Introduction

2 Overview of distributed data management principles

3 Properties of a distributed system

4 Failure management

5 Consistent hashing

6 Case study: large scale distributed file systems (GFS)

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 2 / 40



Introduction

Outline

Guidelines and principles for distributed data management

Basics of distributed systems (networks, performance, principles)

Failure management and distributed transactions

Properties of a distributed system

Specifics of peer-to-peer networks

A powerful and resilient distribution method: consistent hashing

Case study: GFS, a distributed file system

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 3 / 40



Overview of distributed data management principles

Outline

1 Introduction

2 Overview of distributed data management principles
Data replication and consistency

3 Properties of a distributed system

4 Failure management

5 Consistent hashing

6 Case study: large scale distributed file systems (GFS)

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 4 / 40



Overview of distributed data management principles

Distributed systems

A distributed system is an application that coordinates the actions of several
computers to achieve a specific task.

This coordination is achieved by exchanging messages which are pieces of data
that convey some information.
⇒ “shared-nothing” architecture -> no shared memory, no shared disk.

The system relies on a network that connects the computers and handles the
routing of messages.
⇒ Local area networks (LAN), Peer to peer (P2P) networks. . .

Client (nodes) and Server (nodes) are communicating software components: we
assimilate them with the machines they run on.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 5 / 40



Overview of distributed data management principles

LAN-based infrastructure: clusters of machines
Three communication levels: “racks”, clusters, and groups of clusters.

server

switch

segment
client

message

message

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 6 / 40



Overview of distributed data management principles

Example: data centers

Typical setting of a Google data center.

1 ≈ 40 servers per rack;
2 ≈ 150 racks per data center (cluster);
3 ≈ 6,000 servers per data center;
4 how many clusters? Google’s secret, and constantly evolving . . .

Rough estimate: 150-200 data centers? 1,000,000 servers?

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 7 / 40



Overview of distributed data management principles

P2P infrastructure: Internet-based communication

Nodes, or “peers” communicate with messages sent over the Internet network.

The physical route may consist of 10 or more forwarding messages, or “hops”.

Suggestion: use the traceroute utility to check the route between your
laptop and a Web site of your choice.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 8 / 40



Overview of distributed data management principles

Performance

Type Latency Bandwidth
Disk ≈ 5× 10−3s (5 millisec.); At best 100 MB/s
LAN ≈ 1− 2× 10−3s (1-2 millisec.); ≈ 1Gb/s (single rack); ≈ 100Mb/s

(switched);
Internet Highly variable. Typ. 10-100 ms.; Highly variable. Typ. a few MB/s.;

Bottom line (1): it is approx. one order of magnitude faster to exchange main memory
data between 2 machines in the same rack of a data center, that to read on the disk.
Bottom line (2): exchanging through the Internet is slow and unreliable with respect

to LANs.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 9 / 40



Overview of distributed data management principles

Distribution, why?

Sequential access. It takes 166
minutes (more than 2 hours and
a half) to read a 1 TB disk.
Parallel access. With 100 disks,
assuming that the disks work in
parallel and sequentially: about
1mn 30s.
Distributed access. With 100
computers, each disposing of its
own local disk: each CPU pro-
cesses its own dataset.

Scalability

The latter solution is scalable, by adding new computing resources.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 10 / 40



Overview of distributed data management principles

What you should remember: performance of data-centric
distr. systems

1 disk transfer rate is a bottleneck for large scale data management;
parallelization and distribution of the data on many machines is a means to
eliminate this bottleneck;

2 write once, read many: a distributed storage system is appropriate for large
files that are written once and then repeatedly scanned;

3 data locality: bandwidth is a scarce resource, and program should be
“pushed” near the data they must access to.

A distr. system also gives an opportunity to reinforce the security of data with
replication.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 11 / 40



Overview of distributed data management principles Data replication and consistency

What is it about?

Replication: a mechanism that copies data item located on a machine A to a
remote machine B

⇒ one obtains replica

Consistency: ability of a system to behave as if the transaction of each user
always run in isolation from other transactions, and never fails.

Example: shopping basket in an e-commerce application.

⇒ difficult in centralized systems because of multi-users and concurrency.

⇒ even more difficult in distributed systems because of replica.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 12 / 40



Overview of distributed data management principles Data replication and consistency

Some illustrative scenarios

Client A

put(d)

replication 
Primary copy Replica

a) Eager replication with primary copy

Synchronous 

Client B

Server N1

put(d)

read(d)

Server N2

Client A

put(d)

replication 
Primary copy Replica

b) Lazy replication with primary copy

Asynchronous 

Client B

Server N1

put(d)

read(d)

Server N2

Client A

put(d)

replication 
Primary copy Replica

c) Eager replication, distributed

Synchronous 

Client B

Server N1

put(d)

Server N2

Client A

put(d)

replication 
Primary copy Replica

d) Lazy replication, distributed

Synchronous 

Client B

Server N1

put(d)

Server N2

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 13 / 40



Overview of distributed data management principles Data replication and consistency

Consistency management in distr. systems

Consistency: essentially, ensures that the system faithfully reflects the actions of
a user.

Strong consistency (ACID properties) – requires a (slow) synchronous
replication, and possibly heavy locking mechanisms.

Weak consistency – accept to serve some requests with outdated data.

Eventual consistency – same as before, but the system is guaranteed to
converge towards a consistent state based on the last version.

In a system that is not eventually consistent, conflicts occur and the application
must take care of data reconciliation: given the two conflicting copies, determine
the new current one.

Standard RDBMS favor consistency over availability – one of the reasons (?) of
the ’NoSQL’ trend.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 14 / 40



Overview of distributed data management principles Data replication and consistency

Achieving strong consistency – The 2PC protocol

2PC = Two Phase Commit. The algorithm of choice to ensure ACID properties
in a distributed setting.

Problem: the update operations may occur on distinct servers {S1, . . . ,Sn},
called participants.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 15 / 40



Overview of distributed data management principles Data replication and consistency

Two Phase Commit: Overview

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 16 / 40



Overview of distributed data management principles Data replication and consistency

Exercises and questions

You are a customer using an e-commerce application which is known to be
eventually consistent (e.g., Amazon . . . ):

1 Show a scenario where you buy an item, but this item does not appear in
your basket.

2 You reload the page: the item appears. What happened?
3 You delete an item from your command, and add another one: the basket

shows both items. What happened?
4 Will the situation change if you reload the page?
5 Would you expect both items to disapear in an e-commerce application?

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 17 / 40



Properties of a distributed system

Outline

1 Introduction

2 Overview of distributed data management principles

3 Properties of a distributed system

4 Failure management

5 Consistent hashing

6 Case study: large scale distributed file systems (GFS)

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 18 / 40



Properties of a distributed system

Properties of a distributed system: (i) scalability

Scalability refers to the ability of a system to continuously evolve in order to
support an evergrowing amount of tasks.

A scalable system should (i) distribute evenly the task load to all participants,
and (ii) ensure a negligible distribution management cost.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 19 / 40



Properties of a distributed system

Properties of a distributed system: (ii) efficiency

Two usual measures of its efficiency are the response time (or latency) which
denotes the delay to obtain the first item, and the throughput (or bandwidth)
which denotes the number of items delivered in a given period unit (e.g., a
second).

Unit costs:

1 number of messages globally sent by the nodes of the system, regardless
of the message size;

2 size of messages representing the volume of data exchanges.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 20 / 40



Properties of a distributed system

Properties of a distributed system: (iii) availability

Availability is the capacity of of a system to limit as much as possible its latency.
Involves several aspects:

Failure detection.
I monitor the participating nodes to detect failures as early as possible

(usually via “heartbeat” messages);
I design quick restart protocols.

Replication on several nodes.
Replication may be synchronous or asynchronous. In the later case, a
Client write() returns before the operation has been completed on each
site.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 21 / 40



Failure management

Outline

1 Introduction

2 Overview of distributed data management principles

3 Properties of a distributed system

4 Failure management

5 Consistent hashing

6 Case study: large scale distributed file systems (GFS)

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 22 / 40



Failure management

Failure recovery in centralized DBMSs

Common principles:

1 The state of a (data) system is the set of item committed by the application.
2 Updating “in place” is considered as inefficient because of disk seeks.
3 Instead, update are written in main memory and in a sequential log file.
4 Failure? The main memory is lost, but all the committed transactions are in

the log: a REDO operations is carried out when the system restarts.

⇒ implemented in all DBMSs.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 23 / 40



Failure management

Failure and distribution

First: when do we kown that a component is in failed state?

⇒ periodically send message to each participant.

Second: does the centralized recovery still hold?

Yes, providing the log file is accessible . . .

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 24 / 40



Failure management

Distributed logging

Note: distributed logging can be asynchronous (efficient, risky) or asynchronous
(just the opposite).

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 25 / 40



Consistent hashing

Outline

1 Introduction

2 Overview of distributed data management principles

3 Properties of a distributed system

4 Failure management

5 Consistent hashing

6 Case study: large scale distributed file systems (GFS)

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 26 / 40



Consistent hashing

Basics: Centralized Hash files
The collection consists of (key ,value) pairs. A hash function evenly distributes
the values in buckets w.r.t. the key.

hash file

This is the basic, static, scheme: the number of buckets is fixed.
Dynamic hashing extends the number of buckets as the collection grows – the
most popular method is linear hashing.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 27 / 40



Consistent hashing

Issues with hash structures distribution

Straighforward idea: everybody uses the same hash function, and buckets are
replaced by servers.

Two issues:

Dynamicity. At Web scale, we must be able to add or remove servers at
any moment.

Inconsistencies. It is very hard to ensure that all participants share an
accurante view of the system (e.g., the hash function).

Some solutions:

Distributed linear hashing: sophisticated scheme that allows Client nodes
to use an outdated image of the has file; guarantees eventual convergence.

Consistent hashing: to be presented next.
NB: consistent hashing is used in several systems, including Dynamo
(Amazon)/Voldemort (Open Source), and P2P structures, e.g. Chord.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 28 / 40



Consistent hashing

Consistent hashing
Let N be the number of servers. The following functions

hash(key)→ modulo(key ,N) = i

maps a pair (key ,value) to server Si .

Fact: if N changes, or if a client uses an invalid value for N, the mapping
becomes inconsistent.

With Consistent hashing, addition or removal of an instance does not
significantly change the mapping of keys to servers.

a simple, non-mutable hash function h maps both the keys ad the servers
IPs to a large address space A (e.g., [0,264 − 1]);

A is organized as a ring, scanned in clockwise order;

if S and S′ are two adjacent servers on the ring: all the keys in range
]h(S),h(S′)] are mapped to S′.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 29 / 40



Consistent hashing

Illustration
Example: item A is mapped to server IP1-2; item B to server . . .

IP3-1

IP2-2

IP1-1

IP1-2

Object a

Object b

map

A server is added or removed? A local re-hashing is sufficient.
WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 30 / 40



Consistent hashing

Some (really useful) refinements

What if a server fails? How can we balance the load?

Failure ⇒ use replication; put a copy on
the next machine (on the ring), then on the
next after the next, and so on.
Load balancing⇒ map a server to several
points on the ring (virtual nodes)

the more points, the more load
received by a server;

also useful if the server fails: data
rellocation is more evenly distributed.

also useful in case of heterogeneity
(the rule in large-scale systems).

IP3-1

IP2-2

IP1-1

IP1-2

Object a

Object b

IP3-2

Virtual nodes
of IP2-2

IP2-2

IP2-2

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 31 / 40



Consistent hashing

Distributed indexing based on consistent hashing
Main question: where is the hash directory (servers locations)? Several possible
answers:

On a specific (“Master") node, acting as a load balancer. Example: caching
systems.
⇒ raises scalability issues.

Each node records its successor on the ring.
⇒ may require O(N) messages for routing queries – not resilient to
failures.

Each node records logN carefully chosen other nodes.
⇒ ensures O(logN) messages for routing queries – convenient trade-off
for highly dynamic networks (e.g., P2P)

Full duplication of the hash directory at each node.
⇒ ensures 1 message for routing – heavy maintenance protocol which
can be achieved through gossiping (broadcast of any event affecting the
network topology).

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 32 / 40



Consistent hashing

Case study: Dynamo (Amazon)

A distributed system that targets high availability (your shopping cart is stored
there!).

Duplicates and maintains the hash directory at each node via gossiping –
queries can be routed to the correct server with 1 message.

The hosting server replicates N (application parameter) copies of its
objects on the N distinct nodes that follow S on the ring.

Propagates updates asynchronously→ may result in update conflicts,
solved by the application at read-time.

Use a fully distributed failure detection mechanism (failure are detected by
individual nodes when then fail to communicate with others)

An Open-source version is available at http://project-voldemort.com/

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 33 / 40



Case study: large scale distributed file systems (GFS)

Outline

1 Introduction

2 Overview of distributed data management principles

3 Properties of a distributed system

4 Failure management

5 Consistent hashing

6 Case study: large scale distributed file systems (GFS)

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 34 / 40



Case study: large scale distributed file systems (GFS)

History and development of GFS

Google File System, a paper published in 2003 by Google Labs at OSDI.

Explains the design and architecture of a distributed system apt at serving very
large data files; internally used by Google for storing documents collected from
the Web.

Open Source versions have been developed at once: Hadoop File System
(HDFS), and Kosmos File System (KFS).

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 35 / 40



Case study: large scale distributed file systems (GFS)

The problem

Why do we need a distributed file system in the first place?

Fact: standard NFS (left part) does not meet scalability requirements (what if
file1 gets really big?).

Right part: GFS/HDFS storage, based on (i) a virtual file namespace, and (ii)
partitioning of files in “chunks”.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 36 / 40



Case study: large scale distributed file systems (GFS)

Architecture
A Master node performs administrative tasks, while servers store “chunks” and
send them to Client nodes.

The Client maintains a cache with chunks locations, and directly communicates
with servers.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 37 / 40



Case study: large scale distributed file systems (GFS)

Technical details

The architecture works best for very large files (e.g., several Gigabytes),
divided in large (64-128 MBs) chunks.
⇒ this limits the metadata information served by the Master.

Each server implements recovery and replication techniques (default: 3
replicas).

(Availability) The Master sends heartbeat messages to servers, and
initiates a replacement when a failure occurs.

(Scalability) The Master is a potential single point of failure; its protection
relies on distributed recovery techniques for all changes that affect the file
namespace.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 38 / 40



Case study: large scale distributed file systems (GFS)

Workflow of a write() operation (simplified)
The following figure shows a non-concurrent append() operation.

In case of concurrent appends to a chunk, the primary replica assigns serial
numbers to the mutation, and coordinates the secondary replicas.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 39 / 40



Case study: large scale distributed file systems (GFS)

Namespace updates: distributed recovery protocol

Extension of standard techniques for recovery (left: centralized; right:
distributed).

If a node fails, the replicated log file can be used to recover the last transactions
on one of its mirrors.

WebDam (INRIA) Introduction to Distributed Data Systems January 13, 2014 40 / 40


	Introduction
	Overview of distributed data management principles
	Data replication and consistency

	Properties of a distributed system
	Failure management
	Consistent hashing
	Case study: large scale distributed file systems (GFS)

