
Distributed Access Structures
Tree-based techniques

Serge Abiteboul Ioana Manolescu Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution
http://webdam.inria.fr/textbook

April 23, 2013

WebDam (INRIA) Distributed Access Structures April 23, 2013 1 / 19



Indexing structures

We assume a (very) large collection C of pairs (k ,v), where k is a key and v is
the value of an object (seen as row data).

An index on C is a structure that associates the key with the (physical) address
of v . It supports dictionary operations:

1 insertion insert(k ,v),
2 deletion delete(k),
3 key search search(k): v .
4 (optional) range search range(k1, k2): v}.

The efficiency of an index is expressed as the number of unit costs required to
execute an operation.

NB: in a distributed index, one should also consider (node) leave and (node) join
operations.

WebDam (INRIA) Distributed Access Structures April 23, 2013 2 / 19



Tree-based approaches: BATON

Outline

1 Tree-based approaches: BATON

2 Tree-based approaches: BigTable

WebDam (INRIA) Distributed Access Structures April 23, 2013 3 / 19



Tree-based approaches: BATON

Issues with search trees distribution
All operations follow a top-down path→ potential factor of non-scalability

Solutions for distributed structures:

1 caching of the tree structure on the the Client node
2 replication of parts of the tree
3 routing tables, stored at each node, enabling horizontal navigation in the

tree.
WebDam (INRIA) Distributed Access Structures April 23, 2013 4 / 19



Tree-based approaches: BATON

Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

each node covers a range and
contains all objects whose key be-
longs to the range.

S0:a

l0(−∞,∞)

WebDam (INRIA) Distributed Access Structures April 23, 2013 5 / 19



Tree-based approaches: BATON

Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

When a server is added, a split
occurs, and objects are evenly
distributed.
A split generates a routing node
and a data node – They can be
allocated to a same server.
The range of a routing node cov-
ers its subtree.

S0:a

(-∞,∞)

S0:b

l0(−∞,λ1)

S1:c

l1[λ1,∞)

WebDam (INRIA) Distributed Access Structures April 23, 2013 5 / 19



Tree-based approaches: BATON

Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

The tree grows by splitting leaves
and adding a local routing node.
The tree is balanced iff, at each
node, the subtrees heights do not
differ by more than 1 (e.g., AVL
trees).
With non-uniform datasets, split
may lead to imbalance.

S0:a

(−∞,∞)

S0:b

l0(−∞,λ1)

S1:c

[−λ1,∞)

S1:d

l1[λ1,λ2)

S2:e

l2[λ2,∞)

WebDam (INRIA) Distributed Access Structures April 23, 2013 5 / 19



Tree-based approaches: BATON

Balancing the tree

When the tree gets imbalanced, a rotation is required (still similar to AVL trees):

The approach is still non scalable – every path goes through the root.

WebDam (INRIA) Distributed Access Structures April 23, 2013 6 / 19



Tree-based approaches: BATON

A complete example

a

b

d

h i

e

j k

p q

c

f

l m

g

n o

r s

If we do not add some information: node a receives all the messages, node b
receives half of the messages, node d 1/4 of the messages, etc.

⇒ we will partially replicate the tree structure at each node to balance the query
load.

WebDam (INRIA) Distributed Access Structures April 23, 2013 7 / 19



Tree-based approaches: BATON

Routing tables

Each node stores routing tables, that consist of:

1 parent, left child and right child addresses;
2 previous and next adjacent nodes in in-order traversal;
3 left and right routing tables, that reference nodes at the same level and at

position pos + /− 2i , i = 0,1,2, . . ..

Ideas
1 the amount of replication is limited (each node knows a number of “friends"

which is logarithmic in the total number of nodes)
2 each node knows better the nodes which are close, than nodes which are

far.

WebDam (INRIA) Distributed Access Structures April 23, 2013 8 / 19



Tree-based approaches: BATON

Routing tables: example
The left routing table (blue edges) refers to nodes at respective positions
6− 20 = 5, 6− 21 = 4, and 6− 22 = 2.

a

b

d

h i
2

e

j k
4

p q

c

f

l
5

m
6

g

n o ← level 3

r s

Note that the gap between two friends fi and fi+1 gets larger as i increases
(2i+1 − 2i = 2i ).
The number of friends is logN, N being the number of nodes in the considered
level.

WebDam (INRIA) Distributed Access Structures April 23, 2013 9 / 19



Tree-based approaches: BATON

The routing table of node m

Node m must maintain the following information

Node m – level: 3 – pos: 6
Parent: f – Lchild: null – Rchild: null
Left adj.: f – Right adj.: c

Left routing table
i node left right range
0 l null null [lmin, lmax ]
1 k p q [kmin,kmax ]
2 i null null [imin, imax ]

Right routing table
i node left right range
0 n null null [nmin,nmax ]
1 o s t [omin,omax ]

⇒ heavy work when something changes in the network.

WebDam (INRIA) Distributed Access Structures April 23, 2013 10 / 19



Tree-based approaches: BATON

Search operations

A search(k) request is sent by a Client node to any peer p in the structure. Two
steps:

(horizontal) p looks in its routing table for a node p′ at the same level that
covers k
→ p′ is not a friend of p? then there is a friend of p that knows p′ better
than p.

(top-down) from p′, a standard top-down path is followed.

Procedure: p chooses its farthest friends p” whose lower bound is smaller than
k

Search space halved at each step⇒ ensures that p′ is found after at most
logN iterations.

WebDam (INRIA) Distributed Access Structures April 23, 2013 11 / 19



Tree-based approaches: BATON

Example of search

Assume a request sent to node j for a key that belongs to node r

a

b

d

h i

e

j k
4

p q

c

f

l
5

m

g

n
7

o

r s

Blue edges: the (right) friends of j ; so j must forward the request to n, its farthest
friends whose lower bound is smaller than k .

WebDam (INRIA) Distributed Access Structures April 23, 2013 12 / 19



Tree-based approaches: BATON

Example of search

Now n looks in its own routing table to forward the search.

a

b

d

h i

e

j k
4

p q

c

f

l
5

m

g

n
7

o

r s

n knows this part of the tree better than j : it finds o, the ancestor of r , and a
downward path is then initiated.

WebDam (INRIA) Distributed Access Structures April 23, 2013 12 / 19



Tree-based approaches: BigTable

Outline

1 Tree-based approaches: BATON

2 Tree-based approaches: BigTable

WebDam (INRIA) Distributed Access Structures April 23, 2013 13 / 19



Tree-based approaches: BigTable

Case study 2: Bigtable

Can be seen as a distributed map structure, with features taken from B-trees,
and from non-dense indexed files.

Context: very different from Baton.

a controlled environment, with homogeneous servers located in a Data
Center;

a stable organization, with long-term storage of large structured data;

a data model (column-oriented tables with versioning)

Design: very different as well

close to e B-tree, with large capacity leaves

scalability is achieved by a cache maintained by Client nodes.

WebDam (INRIA) Distributed Access Structures April 23, 2013 14 / 19



Tree-based approaches: BigTable

Overview of Bigtable structure
Leaf level: a “table” organized in “rows” indexed by a key. Rows are stored in
lexicographic order on the key values.

a tablet T

row 1

row 2

(...)

so
rt

e
d
 o

n
 k

e
y
s

key columns

"metadata" tablets

k1

k2

k'1

k'2

a tablet T'

row 1

row 2

(...)

key columns

km row m

[km, loc][k'p, loc]

Root tablet

(...)

(...)

"metadata" tablets

so
rt

e
d
 o

n
 k

e
y
s

other tablets

k'p row p

The table is partitioned in “tablets”, and tablets are indexed by upper levels.

Full tablets are split, with upward adjustment.
WebDam (INRIA) Distributed Access Structures April 23, 2013 15 / 19



Tree-based approaches: BigTable

Architecture: one Master - many Servers
The Master maintains the root node and carries out administrative tasks.

Scalability is obtained with Client cache that stores a (possibly outdated) image
of the tree.

WebDam (INRIA) Distributed Access Structures April 23, 2013 16 / 19



Tree-based approaches: BigTable

Example of an out-of-range request followed by an
adjutment
A Client request may fail, due to an out-of-date image of the tree.

An adjustment requires at most height(Tree) rounds of messages.
WebDam (INRIA) Distributed Access Structures April 23, 2013 17 / 19



Tree-based approaches: BigTable

Persistence management in Bigtable

Problem: how can we maintain the sorted structure of tablets?

read() write()

sorted file sorted file Log
file

(redo
entries)

in-memory sorted map

(2)

(1)

Google File System

tablet server
memory

persistent
storage

merge()

flush()

WebDam (INRIA) Distributed Access Structures April 23, 2013 18 / 19



Tree-based approaches: BigTable

Distributed indexing: what you should remember
Key point: Scalability. No single point of failure; even load distribution over all
the nodes. Technical means:

Distribute (and maintain) routing information.
⇒ trade-off between maintenance cost and operations cost.

Cache an image of the structure (e.g., in the Client).
⇒ design a convergence protocol if the image gets outdated.

Key point: efficiency. Clearly depends on the amount of information replicated at
each node or at the Cient.

Stable systems: the structure can be duplicated at each node. Allows O(1)
cost – low maintenance.

Highly dynamic systems: very hard to maintain a consistent view of the
structure for each participant.

Always: be ready to face a failure somewhere; detect failures, use and
replication and deal with it.

WebDam (INRIA) Distributed Access Structures April 23, 2013 19 / 19


	Tree-based approaches: BATON
	Tree-based approaches: BigTable

