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Indexing structures

We assume a (very) large collection C of pairs (k, v), where k is a key and v is
the value of an object (seen as row data).

An index on C is a structure that associates the key with the (physical) address
of v. It supports dictionary operations:

@ insertion insert(k, v),

@ deletion delete(k),

© key search search(k): v.

© (optional) range search range(ki, kz): v}.

The efficiency of an index is expressed as the number of unit costs required to
execute an operation.

NB: in a distributed index, one should also consider (node) leave and (node) join
operations.
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Tree-based approaches: BATON

Issues with search trees distribution
All operations follow a top-down path — potential factor of non-scalability

.................................... a .
Client Client )
request .,

request

Standard tree With local routing nodes

Solutions for distributed structures:

@ caching of the tree structure on the the Client node
@ replication of parts of the tree

© routing tables, stored at each node, enabling horizontal navigation in the
tree.
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Tree-based approaches: BATON

Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

each node covers a range and
contains all objects whose key be-
longs to the range.
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Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

When a server is added, a split
occurs, and objects are evenly (-00, 00)
distributed. -
A split generates a routing node ’ \
and a data node — They can be

allocated to a same server.
The range of a routing node cov- | |

ers its subtree. b(—c0,A1) h[A,00)
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Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

The tree grows by splitting leaves (—00,)

and adding a local routing node. So:a

The tree is balanced iff, at each / \ [—A4,00)
node, the subtrees heights do not Sotb Si:c

differ by more than 1 (e.g., AVL | / \
tre.es). . . /0(—00, /\1 ) Sid So:e
With non-uniform datasets, split

may lead to imbalance. f [7\1‘,7\2) b [Az‘»,oo)
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Tree-based approaches: BATON

Balancing the tree

When the tree gets imbalanced, a rotation is required (still similar to AVL trees):

imbalanced node balanced node

A
h+1 h h
A B B C
A split occurred in A After a rotation

The approach is still non scalable — every path goes through the root.
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Tree-based approaches: BATON

A complete example

h i / \ n /o\
r s
If we do not add some information: node a receives all the messages, node b
receives half of the messages, node d 1/4 of the messages, etc.

= we will partially replicate the tree structure at each node to balance the query
load.
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Tree-based approaches: BATON

Routing tables

Each node stores routing tables, that consist of:

@ parent, left child and right child addresses;
@ previous and next adjacent nodes in in-order traversal;

© left and right routing tables, that reference nodes at the same level and at
position pos+ / —2',i=0,1,2,....

Ideas

@ the amount of replication is limited (each node knows a number of “friends"
which is logarithmic in the total number of nodes)

@ each node knows better the nodes which are close, than nodes which are
far.
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Tree-based approaches: BATON

Routing tables: example
The left routing table (blue edges) refers to nodes at respective positions

6—20=56-2"=4and6 —22 =2,

b/.\c
AN N\
/\m n/\o<—leveI3
V2N

Note that the gap between two friends f; and fi 1 gets larger as i increases

(21+1 2/ — 2/)
The number of friends is log N, N being the number of nodes in the considered

level.
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The routing table of node m

Node m must maintain the following information

Node m — level: 3 —pos: 6
Parent: f — Lchild: null — Rchild: null
Left adj.: f — Right adj.: ¢

Left routing table

i | node | left | right | range
1]k p q [km,-n, kmax]
2 | null | null | [imin, imax)

Right routing table

i | node | left | right | range

0 |n null | null | [Amin, Nmax]
1]o0 s t [Omin, Omax]

= heavy work when something changes in the network.
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Tree-based approaches: BATON

Search operations

A search(k) request is sent by a Client node to any peer p in the structure. Two
steps:

@ (horizontal) p looks in its routing table for a node p’ at the same level that

covers k
— p’ is not a friend of p? then there is a friend of p that knows p’ better

than p.
@ (top-down) from p’, a standard top-down path is followed.

Procedure: p chooses its farthest friends p" whose lower bound is smaller than
k

Search space halved at each step = ensures that p’ is found after at most
log N iterations.
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Tree-based approaches: BATON

Example of search

Assume a request sent to node j for a key that belongs to node r

b/.\c
N O N\
/\ M/\

"’ /\

Blue edges: the (right) friends of j; so j must forward the request to n, its farthest
friends whose lower bound is smaller than k.
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Tree-based approaches: BATON

Example of search

Now n looks in its own routing table to forward the search.

b/.\c
V0 VAN
TANVAN AN
ANRYN

n knows this part of the tree better than j: it finds o, the ancestor of r, and a
downward path is then initiated.
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Tree-based approaches: BigTable

Case study 2: Bigtable

Can be seen as a distributed map structure, with features taken from B-trees,
and from non-dense indexed files.

Context: very different from Baton.

@ a controlled environment, with homogeneous servers located in a Data
Center;

@ a stable organization, with long-term storage of large structured data;
@ a data model (column-oriented tables with versioning)

Design: very different as well

@ close to e B-tree, with large capacity leaves
@ scalability is achieved by a cache maintained by Client nodes.
WebDam (INRIA)
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Tree-based approaches: BigTable

Overview of Bigtable structure

Leaf level: a “table” organized in “rows” indexed by a key. Rows are stored in
lexicographic order on the key values.

Root tablet

"metadata” tablets ;i\'metadata" tablets

l [km, locIk'p, loc] l (..) ’ ‘
key ‘cﬁns " ke>& columns \
% k1 row 1 2| k1 row 1
~ k2 row 2 f_f k2 row 2
5 = (...)
(...) o (...)
8 £
g km | rowm S k'p | rowp
(]

atablet T a tablet T' other tablets

The table is partitioned in “tablets”, and tablets are indexed by upper levels.
Full tablets are split, with upward adjustment.
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Tree-based approaches: BigTable

Architecture: one Master - many Servers
The Master maintains the root node and carries out administrative tasks.

client

request '_{oot node

forwardir';:q-._'
path

answer + ™~
image initialization

a) A new client contacts a distributed system

request

client . root node

answer +.
image adjustment

b) Using its image, the client directly contacts N

Scalability is obtained with Client cache that stores a (possibly outdated) image

of the tree.
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Tree-based approaches: BigTable

Example of an out-of-range request followed by an

adjutment
A Client request may fail, due to an out-of-date image of the tree.

root node

Client
o [1,231] [232,562] [563,682] [769,@000]
image ._._f.fearch(sss) ---------- s
answer +
(a) (5) (3) image adjustment
1,231] [232,562] [563,1000]

An adjustment requires at most height(Tree) rounds of messages.
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Tree-based approaches: BigTable

Persistence management in Bigtable

Problem: how can we maintain the sorted structure of tablets?

merge() (2)

tablet server / \\Gn-memory sorted map) (1)
memory

persistent / \ } flush() L.

storage

sorted file sorted file : - i Log
: : i file

L . entries)i

Google File System
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Distributed indexing: what you should remember

Key point: Scalability. No single point of failure; even load distribution over all
the nodes. Technical means:

@ Distribute (and maintain) routing information.
= trade-off between maintenance cost and operations cost.

@ Cache an image of the structure (e.g., in the Client).
=> design a convergence protocol if the image gets outdated.
Key point: efficiency. Clearly depends on the amount of information replicated at
each node or at the Cient.

@ Stable systems: the structure can be duplicated at each node. Allows O(1)
cost — low maintenance.

@ Highly dynamic systems: very hard to maintain a consistent view of the
structure for each participant.

Always: be ready to face a failure somewhere; detect failures, use and
replication and deal with it.
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