Distributed Access Structures
Tree-based techniques

Serge Abiteboul loana Manolescu  Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

[ Wb

Web Data Management and Distribution
http.//webdam.inria.fr/textbook

April 23, 2013

WebDam (INRIA) Distributed Access Structures April 23,2013 1/19



Indexing structures

We assume a (very) large collection C of pairs (k, v), where k is a key and v is
the value of an object (seen as row data).

An index on C is a structure that associates the key with the (physical) address
of v. It supports dictionary operations:

@ insertion insert(k, v),

@ deletion delete(k),

© key search search(k): v.

© (optional) range search range(ki, kz): v}.

The efficiency of an index is expressed as the number of unit costs required to
execute an operation.

NB: in a distributed index, one should also consider (node) leave and (node) join
operations.

WebDam (INRIA) Distributed Access Structures April 23,2013 2/19



Outline

0 Tree-based approaches: BATON

WebDam (INRIA) Distributed Access Structures



Tree-based approaches: BATON

Issues with search trees distribution
All operations follow a top-down path — potential factor of non-scalability

.................................... a .
Client Client )
request .,

request

Standard tree With local routing nodes

Solutions for distributed structures:

@ caching of the tree structure on the the Client node
@ replication of parts of the tree

© routing tables, stored at each node, enabling horizontal navigation in the
tree.

WebDam (INRIA) Distributed Access Structures April 23,2013 4/19



Tree-based approaches: BATON

Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

each node covers a range and
contains all objects whose key be-
longs to the range.

WebDam (INRIA) Distributed Access Structures



Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

When a server is added, a split
occurs, and objects are evenly (-00, 00)
distributed. -
A split generates a routing node ’ \
and a data node — They can be

allocated to a same server.
The range of a routing node cov- | |

ers its subtree. b(—c0,A1) h[A,00)

WebDam (INRIA) Distributed Access Structures April 23,2013 5/19



Case study 1: BATON (P2P)

Conceptually: a standard binary search tree.

The tree grows by splitting leaves (—00,)

and adding a local routing node. So:a

The tree is balanced iff, at each / \ [—A4,00)
node, the subtrees heights do not Sotb Si:c

differ by more than 1 (e.g., AVL | / \
tre.es). . . /0(—00, /\1 ) Sid So:e
With non-uniform datasets, split

may lead to imbalance. f [7\1‘,7\2) b [Az‘»,oo)

WebDam (INRIA)

Distributed Access Structures

April 23,2013 5/19



Tree-based approaches: BATON

Balancing the tree

When the tree gets imbalanced, a rotation is required (still similar to AVL trees):

imbalanced node balanced node

A
h+1 h h
A B B C
A split occurred in A After a rotation

The approach is still non scalable — every path goes through the root.

WebDam (INRIA) Distributed Access Structures April 23,2013 6/19



Tree-based approaches: BATON

A complete example

h i / \ n /o\
r s
If we do not add some information: node a receives all the messages, node b
receives half of the messages, node d 1/4 of the messages, etc.

= we will partially replicate the tree structure at each node to balance the query
load.

WebDam (INRIA) Distributed Access Structures April 23,2013 7/19



Tree-based approaches: BATON

Routing tables

Each node stores routing tables, that consist of:

@ parent, left child and right child addresses;
@ previous and next adjacent nodes in in-order traversal;

© left and right routing tables, that reference nodes at the same level and at
position pos+ / —2',i=0,1,2,....

Ideas

@ the amount of replication is limited (each node knows a number of “friends"
which is logarithmic in the total number of nodes)

@ each node knows better the nodes which are close, than nodes which are
far.

WebDam (INRIA) Distributed Access Structures April 23,2013 8/19



Tree-based approaches: BATON

Routing tables: example
The left routing table (blue edges) refers to nodes at respective positions

6—20=56-2"=4and6 —22 =2,

b/.\c
AN N\
/\m n/\o<—leveI3
V2N

Note that the gap between two friends f; and fi 1 gets larger as i increases

(21+1 2/ — 2/)
The number of friends is log N, N being the number of nodes in the considered

level.
WebDam (INRIA) Distributed Access Structures April 23,2013 9/19



The routing table of node m

Node m must maintain the following information

Node m — level: 3 —pos: 6
Parent: f — Lchild: null — Rchild: null
Left adj.: f — Right adj.: ¢

Left routing table

i | node | left | right | range
1]k p q [km,-n, kmax]
2 | null | null | [imin, imax)

Right routing table

i | node | left | right | range

0 |n null | null | [Amin, Nmax]
1]o0 s t [Omin, Omax]

= heavy work when something changes in the network.

WebDam (INRIA) Distributed Access Structures April 23,2013 10/19



Tree-based approaches: BATON

Search operations

A search(k) request is sent by a Client node to any peer p in the structure. Two
steps:

@ (horizontal) p looks in its routing table for a node p’ at the same level that

covers k
— p’ is not a friend of p? then there is a friend of p that knows p’ better

than p.
@ (top-down) from p’, a standard top-down path is followed.

Procedure: p chooses its farthest friends p" whose lower bound is smaller than
k

Search space halved at each step = ensures that p’ is found after at most
log N iterations.

WebDam (INRIA) Distributed Access Structures April 23,2013 11/19



Tree-based approaches: BATON

Example of search

Assume a request sent to node j for a key that belongs to node r

b/.\c
N O N\
/\ M/\

"’ /\

Blue edges: the (right) friends of j; so j must forward the request to n, its farthest
friends whose lower bound is smaller than k.

WebDam (INRIA) Distributed Access Structures April 23,2013 12/19



Tree-based approaches: BATON

Example of search

Now n looks in its own routing table to forward the search.

b/.\c
V0 VAN
TANVAN AN
ANRYN

n knows this part of the tree better than j: it finds o, the ancestor of r, and a
downward path is then initiated.

WebDam (INRIA) Distributed Access Structures April 23,2013

12/19



Outline

e Tree-based approaches: BigTable

WebDam (INRIA) Distributed Access Structures



Tree-based approaches: BigTable

Case study 2: Bigtable

Can be seen as a distributed map structure, with features taken from B-trees,
and from non-dense indexed files.

Context: very different from Baton.

@ a controlled environment, with homogeneous servers located in a Data
Center;

@ a stable organization, with long-term storage of large structured data;
@ a data model (column-oriented tables with versioning)

Design: very different as well

@ close to e B-tree, with large capacity leaves
@ scalability is achieved by a cache maintained by Client nodes.
WebDam (INRIA)

Distributed Access Structures April 23, 2013 14/19



Tree-based approaches: BigTable

Overview of Bigtable structure

Leaf level: a “table” organized in “rows” indexed by a key. Rows are stored in
lexicographic order on the key values.

Root tablet

"metadata” tablets ;i\'metadata" tablets

l [km, locIk'p, loc] l (..) ’ ‘
key ‘cﬁns " ke>& columns \
% k1 row 1 2| k1 row 1
~ k2 row 2 f_f k2 row 2
5 = (...)
(...) o (...)
8 £
g km | rowm S k'p | rowp
(]

atablet T a tablet T' other tablets

The table is partitioned in “tablets”, and tablets are indexed by upper levels.
Full tablets are split, with upward adjustment.

WebDam (INRIA) Distributed Access Structures April 23,2013 15/19



Tree-based approaches: BigTable

Architecture: one Master - many Servers
The Master maintains the root node and carries out administrative tasks.

client

request '_{oot node

forwardir';:q-._'
path

answer + ™~
image initialization

a) A new client contacts a distributed system

request

client . root node

answer +.
image adjustment

b) Using its image, the client directly contacts N

Scalability is obtained with Client cache that stores a (possibly outdated) image

of the tree.
WebDam (INRIA) Distributed Access Structures April 23,2013 16/19



Tree-based approaches: BigTable

Example of an out-of-range request followed by an

adjutment
A Client request may fail, due to an out-of-date image of the tree.

root node

Client
o [1,231] [232,562] [563,682] [769,@000]
image ._._f.fearch(sss) ---------- s
answer +
(a) (5) (3) image adjustment
1,231] [232,562] [563,1000]

An adjustment requires at most height(Tree) rounds of messages.

WebDam (INRIA) Distributed Access Structures April 23,2013

17/19



Tree-based approaches: BigTable

Persistence management in Bigtable

Problem: how can we maintain the sorted structure of tablets?

merge() (2)

tablet server / \\Gn-memory sorted map) (1)
memory

persistent / \ } flush() L.

storage

sorted file sorted file : - i Log
: : i file

L . entries)i

Google File System

WebDam (INRIA) Distributed Access Structures April 23,2013 18/19



Distributed indexing: what you should remember

Key point: Scalability. No single point of failure; even load distribution over all
the nodes. Technical means:

@ Distribute (and maintain) routing information.
= trade-off between maintenance cost and operations cost.

@ Cache an image of the structure (e.g., in the Client).
=> design a convergence protocol if the image gets outdated.
Key point: efficiency. Clearly depends on the amount of information replicated at
each node or at the Cient.

@ Stable systems: the structure can be duplicated at each node. Allows O(1)
cost — low maintenance.

@ Highly dynamic systems: very hard to maintain a consistent view of the
structure for each participant.

Always: be ready to face a failure somewhere; detect failures, use and
replication and deal with it.

WebDam (INRIA) Distributed Access Structures April 23, 2013 19/19



	Tree-based approaches: BATON
	Tree-based approaches: BigTable

