
Distributed Access Structures
Hash-based techniques

Serge Abiteboul Ioana Manolescu Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution
http://webdam.inria.fr/textbook

September 23, 2011

WebDam (INRIA) Distributed Access Structures September 23, 2011 1 / 44



Introduction

Outline

1 Introduction

2 Centralized indexing

3 Distributed techniques

WebDam (INRIA) Distributed Access Structures September 23, 2011 2 / 44



Introduction

Outline

Indexing techniques for very large collections
⇒ in the present talk, focus on hash-based approaches.
Indexing techniques in centralized databases

fixed hashing, dynamic hashing and linear hashing.

Distributed indexing techniques for very large collections

Distributed linear hashing

Consistent hashing

Illustration with the Dynamo system (Amazon) and Chord (P2P systems)
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Introduction

Indexing structures

We assume a (very) large collection C of pairs (k ,v), where k is a key and v is
the value of an object (seen as row data).

An index on C is a structure that associates the key with the (physical) address
of v . It supports dictionary operations:

1 insertion insert(k ,v),

2 deletion delete(k),

3 key search search(k): v .

4 (optional) range search range(k1, k2): v}.

The efficiency of an index is expressed as the number of unit costs required to
execute an operation.

NB: in a distributed index, one should also consider (node) leave and (node)
join operations.
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Centralized indexing Static and dynamic hashing

Basics: Centralized Hash files
The collection consists of (key ,value) pairs. A hash function evenly distributes
the values in buckets w.r.t. the key.

hash file

This is the basic, static, scheme: the number of buckets is fixed.
Dynamic hashing extends the number of buckets as the collection grows – the
most popular method is linear hashing.
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Centralized indexing Static and dynamic hashing

Dynamic hashing

Now, we aim at reorganizing the hash file when insertions/deletions occur. We
adopt the following constraints:

the directory size (number of entries) is a power of 2.

the hash function returns a 4-bytes integer (32 bits)

Basic idea: we use the n first bits of the hash result, with n < 32.
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Centralized indexing Static and dynamic hashing

Example : ash values for the 16 movies

titre h(title)
Vertigo 01110010
Brazil 10100101
Twin Peaks 11001011
Underground 01001001
Easy Rider 00100110
Psychose 01110011
Greystoke 10111001
Shining 11010011
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Centralized indexing Static and dynamic hashing

Build the hash file

We only use the first bit.

Two possible values: 0 et 1

Two directory entries; 2 buckets.

The assignement of a record to a buckets depends on its last bit.

=> at this point, still a classical framework.
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Centralized indexing Static and dynamic hashing

After 5 movies

0

1 Brazil

Twin Peaks

Underground

Easy Rider

Vertigo
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Centralized indexing Static and dynamic hashing

Insertions

Assume 3 films max in each bucket. Inserting Psycho (hash value 01110011)
overflows the first block. Then:

The directory size doubles.

A new bucket is allocated for entry 01

Entries 10 and 11 both refer to the same bucket.

This, on add only the minimal number of buckets – but the directory grows with
a fixed rate.
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Centralized indexing Static and dynamic hashing

Illustration

00

01

10

11

Underground

Vertigo

Psychose

Easy Rider

Brazil
Twin Peaks
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Centralized indexing Static and dynamic hashing

Subsequent insertions

Several cases

One insert in a full bucket, referred to by several directory entries.
◮ a new bucket is allocated; pointers are distributed; no directory enlargment.

One insert in a full bucket, referred to by only one entry.
◮ One doubles again the directory.

The directory size may become very large.
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Centralized indexing Static and dynamic hashing

Greystoke 10111001 et Shining 11010011
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Centralized indexing Static and dynamic hashing

Exercises

The following is a list of French départements.

3 Allier 36 Indre 18 Cher 75 Paris
39 Jura 9 Ariège 81 Tarn 11 Aude
12 Aveyron 25 Doubs 73 Savoie 55 Meuse
15 Cantal 51 Marne 42 Loire 40 Landes
14 Calvados 30 Gard 84 Vaucluse 7 Ardèche

We assume that a bucket contains up to 5 records. Build a static hash file.
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Centralized indexing Static and dynamic hashing

Exercises (cont’)

Same exercise, but now use an extendible hash file based on the following
hash values.

Allier 1001 Indre 1000 Cher 1010 Paris 0101
Jura 0101 Ariège 1011 Tarn 0100 Aude 1101
Aveyron 1011 Doubs 0110 Savoie 1101 Meuse 1111
Cantal 1100 Marne 1100 Loire 0110 Landes 0100
Calvados 1100 Gard 1100 Vaucluse 0111 Ardèche 1001
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Centralized indexing Linear hashing

Linear hashing, a dynamic hash method

The basic idea is to split a bucket when the index gets full.

add a new bucket b′ to the file;

move some records from b to b′.

First approach: split a bucket that gets full. Problem: this also changes the
hash function which must accurately reflect the distribution of keys.

Intuition of linear hashing: decouple the split of buckets, and the evolution of
the hash function, such that they eventually converge.
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Centralized indexing Linear hashing

Linear hashing: how does it work?

When a bucket b overflows:

1 a chained bucket is linked to b, in order to accommodate the new records,

2 a pre-determined bucket bp, usually distinct from b is split, p being a
special index value maintained by the structure and called the pointer.

Initially, p = 0, so bucket b0 is the first that must split, even if it does not
overflow. The value of p is incremented after each split.
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Centralized indexing Linear hashing

Illustration

Here, M = 4 and each bucket holds at most 4 objects (we only show the key).
The hash function is h(k) = k mod M.

An object with key 42 must be inserted in bucket b2. A bucket is linked to b2,
and bucket b0 (recall that p = 0) is split.
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Centralized indexing Linear hashing

Evolution of the hash function

If we keep unchanged the hash function, all the objects moved to bucket b4

cannot be found anymore.

Linear hashing actually relies on a pair of hash functions (hn,hn+1)

1 hn : k → k mod 2n

2 hn+1 : k → k mod 2n+1

hn applies to the buckets in the range [p,M − 1], while hn+1 applies to all other
buckets.
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Centralized indexing Linear hashing

What happens next?

Bucket b1 is the next one to split, if any of the buckets (including b1 itself)
overflows.

Then p will be set to 2, and b2 becomes the split target.

When b3 splits in turn, the hash file is “switched” one level up, the pair of hash
function becomes (h1,h2), and p is reset to 0.
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Centralized indexing Linear hashing

Dictionary operations

The following computation returns the address a of the bucket that contains a
key k :

a := hn (k);
if ( a < p) a := hn+1(k)

Can be used for insertions, searches, and deletions.

Note: the structure still requires a directory which grows linearly.
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Centralized indexing Linear hashing

Exercises

1 Build a LH file on the list of départements.

2 Consider the LH file of the above figure. What happens if we insert an
object with key 47 (still assuming that the maximal number of objects in a
bucket is 4).
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Distributed techniques

Issues with hash structures distribution

Straighforward idea: everybody uses the same hash function, and buckets are
replaced by servers. Problems:

Dynamicity. At Web scale, we must be able to add or remove servers at
any moment.

Inconsistencies. It is very hard to ensure that all participants share an
accurate view of the system (e.g., the hash function).

Some solutions:

Distributed linear hashing: sophisticated scheme that allows Client nodes
to use an outdated image of the has file; guarantees eventual
convergence.

Consistent hashing: to be presented next.
NB: consistent hashing is used in several systems, including Dynamo
(Amazon)/Voldemort (Open Source), and P2P structures, e.g. Chord.
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Distributed techniques Distributed linear hashing

Distribution strategy: mostly trivial

Assume for the time being that there exists a global knowledge of the file level,
n, with hash functions (hn,hn+1), and of the pointer p.

The cluster is a set of servers {S0,S1, . . . ,SM}, 2n ≤ M < 2n+1, each holding
a bucket.

The bucket of a server Si overflows? Sp, splits; a new server SM+1 is allocated
to the structure, and objects are transferred from Sp to SM+1 (same as LH).

Fine. So the problem is essentially that of maintaining the global parameters n
and p.
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Distributed techniques Distributed linear hashing

How to maintain n and p. Typical scenarios

Fully accurate:

1 each change is broadcasted to all participants.

2 insert and searches are fast; any update must be propagated to servers
and clients

Allow some latency in the propagation of updates

1 More flexible: the structure accepts that some participants are informed
lazily.

2 More reasonable in a large distributed and/or unstable system.

3 Requests may have to follow a path through several nodes.
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Distributed techniques Distributed linear hashing

The LH* approach

Each server and each Client stores a local copy of the pair (n,p).

This copy may be out-of-date with respect to the “true” parameters n and p
used by the file.

A dictionary operation with key k may be sent to a wrong server, due to some
distributed file evolution ignored by the Client.

The LH* then applies a forwarding path algorithm that eventually leads to the
correct server.

Eventualy, the Cliet gets a “fresh” pair (n,p).
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Distributed techniques Distributed linear hashing

The LH* approach – details
Assume that the Client image is (nC = 1,pC = 1), whereas several splits led
the LH* to the status (n = 3,p = 2).
The Client sends search(5). It computes a = hnC (5) = 5 mod 21 = 1 and the
request is sent to S1.

′
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Distributed techniques Consistent hashing

Consistent hashing

Let N be the number of servers. The following functions

hash(key)→ modulo(key ,N) = i

maps a pair (key ,value) to server Si .

Fact: if N changes, or if a client uses an invalid value for N, the mapping
becomes inconsistent.

With Consistent hashing, addition or removal of an instance does not
significantly change the mapping of keys to servers.

a simple, non-mutable hash function h maps both the keys ad the servers
IPs to a large address space A (e.g., [0,264 − 1];

A is organized as a ring, scanned in clockwise order;

if S and S′ are two adjacent servers on the ring: all the keys in range
]h(S),h(S′)] are mapped to S′.
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Distributed techniques Consistent hashing

Illustration
Example: item A is mapped to server IP1-2; item B to server . . .

A server is added or removed? A local re-hashing is sufficient.
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Distributed techniques Consistent hashing

Some (really useful) refinements

What if a server fails? How can we balance the load?

Failure ⇒ use replication; put a copy on
the next machine (on the ring), then on the
next after the next, and so on.
Load balancing ⇒ map a server to several
points on the ring (virtual nodes)

the more points, the more load
received by a server;

also useful if the server fails: data
rellocation is more evenly distributed.

also useful in case of heterogeneity
(the rule in large-scale systems).
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Distributed techniques Consistent hashing

Distributed indexing based on consistent hashing
Main question: where is the hash directory (servers locations)? Several
possible answers:

On a specific (“Master") node, acting as a load balancer. Example:
caching systems.
⇒ raises scalability issues.

Each node records its successor on the ring.
⇒ may require O(N) messages for routing queries – not resilient to
failures.

Each node records logN carefully chosen other nodes.
⇒ ensures O(logN) messages for routing queries – convenient trade-off
for highly dynamic networks (e.g., P2P)

Full duplication of the hash directory at each node.
⇒ ensures 1 message for routing – heavy maintenance protocol which
can be achieved through gossiping (broadcast of any event affecting the
network topology).

WebDam (INRIA) Distributed Access Structures September 23, 2011 33 / 44



Distributed techniques Consistent hashing

Case study: Dynamo (Amazon)

A distributed system that targets high availability (your shopping cart is stored
there!).

Duplicates and maintains the hash directory at each node via gossiping –
queries can be routed to the correct server with 1 message.

The hosting server replicates N (application parameter) copies of its
objects on the N distinct nodes that follow S on the ring.

Propagates updates asynchronously → may result in update conflicts,
solved by the application at read-time.

Use a fully distributed failure detection mechanism (failure are detected
by individual nodes when then fail to communicate with others)

An Open-source version is available at http://project-voldemort.com/
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Distributed techniques Consistent hashing

Implementation: Chord Ring

The hash function h takes the URL of a peer and maps it to the address space
[0..2m − 1]. Hashing is based on arithmetic modulo 2m.

h : pId → pId mod 2m

h distributes the peers around a ring. We assume no two peers have the same
h(pId) (m large enough).

The Chord Ring with m =
3,2m = 8. Each peer with id n
is located at node n mod 8 on
the ring.
Ex: peer 22 is assigned to
node 6.
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Distributed techniques Consistent hashing

Distribute the keys to the peers
Keys are hashed with function h with range [0..2m − 1]
Rule: a key k is assigned to the unique peer p such that

h(p) ≤ h(k)

and there is no p’ such that h(p) < h(p’) ≤ h(k)

We say that p is responsible for key k.

Assignment of item to peer:
item 13 is hashed to h(13) = 5
and assigned to the peer p with
the largest h(p) ≤ 5.
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Distributed techniques Consistent hashing

Routing tables

For each peer p, friendsp contains (at most) log2m = m peer addresses.
For each i in [1..m], the ith friend pi is such that

h(pi ) ≤ h(p)+2i−1

there is no p’ such that h(pi ) < h(p’) ≤ h(p)+2i−1

In other words: pi is the peer responsible for key h(p) + 2i−1.

Examples (Let m = 10, 2m = 1024; consider peer p with h(p) = 10.)

The first friend p1 is the peer resp. for 10 + 20 = 11

The second friend p2 is the peer resp. for 10 + 21 = 12

The third friend p3 is the peer resp. for 10 + 22 = 14

friend p7 is the peer resp. for 10 + 26 = 74

The last friend p10 is the peer resp. for (10 + 512) = 522

Exercise: express the gap between friends[i] and friends[i+1]
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Distributed techniques Consistent hashing

Understanding routing tables
Important properties:

1 a peer maintains a small routing table, e.g., 16 friends for each peer, in a
ring with 216 = 65,536 nodes;

2 each peer knows better the peers close on the ring that the peers far
away;

3 a peer p cannot (in general) find directly the peer p’ responsible for a key
k; but p can find a friend which holds a more accurate information about k.

The figure shows the friends
of peer p16, located at node 0
(note the collisions). p16 does
not know p22.

Exercise: what are the friends
of p11, located at node 3?
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Distributed techniques Consistent hashing

Searching Chord: The get algorithm
Peer p looks for index(k):

if p is responsible for k, we are done;
else let i such that h(p)+2i−1 ≤ h(k) < h(p)+2i : forward the search to the
friend pi .

Fact: the search range is (at worse) halved at each step → the search
converges in O(log2m) = O(m) hops.

Examples (p16 receives a request for item k, with h(k)=7.)

1 p16 forwards the request to p11,
its third friend (why?).

2 then p11 forwards to p22, its third
friend (why?).

3 p22 find item k locally.

Exercise: develop an example of the
worst case with m = 10.
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Distributed techniques Consistent hashing

Joining Chord

In a P2P network, nodes can join and leave at any time. When a peer p wants
to join, it uses a contact peer p’ which carries out three tasks:

p must initialize its own routing table
⇒ p’ uses its routing table to locate p’s friends. Cost: O(log2 N), where
N is the current number of nodes.

the routing table of the existing nodes must be updated to reflect the
addition of p;
⇒ more tricky: see details on next slide.

finally p takes from its predecessor all the items k such that h(p) ≤ h(k).

For highly dynamic networks, Chord relies on a stabilization protocol (not
presented).
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Distributed techniques Consistent hashing

Details: updating the routing tables of existing nodes
Peer p joins the network. Existing routing tables must be updated
Fact: p becomes the ith friend of a peer p’ iff the following conditions hold:

1 h(p)− 2i−1 ≤ h(p′) < h(p)− 2i−2

2 the current ith friend of p’ is before p on the ring.

Example: Peer 13 joins. It takes the slot
5. Then

1 p13 computes its own routing
table (explain how, assuming its
contact node is p22).

2 p13 is the third friend of a peer at
slot 2 (5 − 23−2 − 1) or 1
(5 − 23−1) (check that it’s true).

3 p13 moves part of the data stored
on peer 11.
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Distributed techniques Consistent hashing

Leaving Chord

A peer p may leave “cold” (you know you are leaving ⇒ take appropriate
measures) or leave “hot” (failure). In both cases

local index at p must be transmitted to the predecessor (OK if p exits
gracefully, but what if p fails?)

existing routing tables must be updated

meawhile, the other peers must be ready to fail when they attempt to
contact a friend

Two extensions allow to cope with failures:

Predecessor list: each peer maintains the list of its r immediate
predecessor (r depends on the network churn).
⇒ if a friend of p does not answer, the query is routed to a predecessor
of p which chooses another route.

Replication: items are replicated on the r predecessors.
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Distributed techniques Consistent hashing

Exercises

Someone proposes the following solution to the problem of distributing
the hash directory: each node will maintain the hash value and location of
its successor. Discuss the advantage and downsides of this solution, and
examine in particular the cost of the dictionary operation (insert, delete,
search) and network maintenance operations (join and leave).

Express the gap between friends[i ] and friends[i + 1] in the routing table
of a CHORD peer.
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Distributed techniques Consistent hashing

Exercises
Develop an example of the worst case for the search() operation in
CHORD, with m = 10.
Consider the CHORD ring below. What are the friends of p11, located at

3?
WebDam (INRIA) Distributed Access Structures September 23, 2011 44 / 44


	Introduction
	Centralized indexing
	Static and dynamic hashing
	Linear hashing

	Distributed techniques
	Distributed linear hashing
	Consistent hashing


