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MapReduce Introduction

Data analysis at a large scale

Very large data collections (TB to PB) stored on distributed filesystems:
I Query logs
I Search engine indexes
I Sensor data

Need efficient ways for analyzing, reformatting, processing them
In particular, we want:

I Parallelization of computation (benefiting of the processing power of all
nodes in a cluster)

I Resilience to failure
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MapReduce Introduction

Centralized computing with distributed data storage

Run the program at client node, get data from the distributed system.

Client node

disk

memory

disk

memory

disk

memory

program

data flow
(input)

data flow
(output)

Downsides: important data flows, no use of the cluster computing resources.
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MapReduce Introduction

Pushing the program near the data

Client node

disk

process1

disk

disk

program()
program()

program()

process2

process3

coordinator()
result

result

result

MapReduce: A programming model (inspired by standard functional
programming operators) to facilitate the development and execution of
distributed tasks.

Published by Google Labs in 2004 at OSDI [DG04]. Widely used since
then, open-source implementation in Hadoop.
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MapReduce Introduction

MapReduce in Brief

The programmer defines the program logic as two functions:

Map transforms the input into key-value pairs to process
Reduce aggregates the list of values for each key

The MapReduce environment takes in charge distribution aspects

A complex program can be decomposed as a succession of Map and
Reduce tasks

Higher-level languages (Pig, Hive, etc.) help with writing distributed
applications

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011 7 / 72



MapReduce The MapReduce Computing Model

Outline

1 MapReduce
Introduction
The MapReduce Computing Model
MapReduce Optimization
Application: PageRank
MapReduce in Hadoop

2 Toward Easier Programming Interfaces: Pig

3 Conclusions

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011 8 / 72



MapReduce The MapReduce Computing Model

Three operations on key-value pairs

1 User-defined: map : (K ,V )→ list(K ′,V ′)

function map(uri, document)
foreach distinct term in document

output (term, count(term, document))

2 Fixed behavior: shuffle : list(K ′,V ′)→ list(K ′, list(V ′)) regroups all
intermediate pairs on the key

3 User-defined: reduce : (K ′, list(V ′))→ list(K ′′,V ′′)

function reduce(term, counts)
output (term, sum(counts))
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MapReduce The MapReduce Computing Model

Job workflow in MapReduce

Important: each pair, at each phase, is processed independently from the other
pairs.

  ... ,(kn, vn) , ... , (k2,v2), (k1, v1)

Input: a list of (key, value) pairs

 map(k1, v1)

Map operator
(k' 1, v'1)
...
(k'2, v'2)
...
(k'1, v'p)
...
(k'1, v'q)
...

 reduce(k'1, <v'1, v'p, v'q, ...>)

 (k'2, <v'2, ...>)

Reduce operator

(v")

 (k'1, <v'1, v'p, v'q, ...>)

Intermediate
structure

Network and distribution are transparently managed by the MapReduce
environment.
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MapReduce The MapReduce Computing Model

Example: term count in MapReduce (input)

URL Document

u1 the jaguar is a new world mammal of the felidae family.
u2 for jaguar, atari was keen to use a 68k family device.
u3 mac os x jaguar is available at a price of us $199 for apple’s

new “family pack”.
u4 one such ruling family to incorporate the jaguar into their name

is jaguar paw.
u5 it is a big cat.
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MapReduce The MapReduce Computing Model

Example: term count in MapReduce

term count

jaguar 1
mammal 1
family 1
jaguar 1
available 1
jaguar 1
family 1
family 1
jaguar 2
. . .

map

output
shuffle input

term count

jaguar 1,1,1,2
mammal 1
family 1,1,1
available 1
. . .

shuffle output
reduce input

term count

jaguar 5
mammal 1
family 3
available 1
. . .

final

output
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MapReduce The MapReduce Computing Model

Example: simplification of the map

function map(uri, document)
foreach distinct term in document
output (term, count(term, document))

can actually be further simplified:

function map(uri, document)
foreach term in document
output (term, 1)

since all counts are aggregated.
Might be less efficient though (we may need a combiner, see further)
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MapReduce The MapReduce Computing Model

A MapReduce cluster

Nodes inside a MapReduce cluster are decomposed as follows:

A jobtracker acts as a master node; MapReduce jobs are submitted to it

Several tasktrackers run the computation itself, i.e., map and reduce tasks

A given tasktracker may run several tasks in parallel

Tasktrackers usually also act as data nodes of a distributed filesystem (e.g.,
GFS, HDFS)

+ a client node where the application is launched.
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MapReduce The MapReduce Computing Model

Processing a MapReduce job

A MapReduce job takes care of the distribution, synchronization and failure
handling. Specifically:

the input is split into M groups; each group is assigned to a mapper
(assignment is based on the data locality principle)

each mapper processes a group and stores the intermediate pairs locally

grouped instances are assigned to reducers thanks to a hash function

(shuffle) intermediate pairs are sorted on their key by the reducer

one obtains grouped instances, submitted to the reduce function

Remark: the data locality does no longer hold for the reduce phase, since it
reads from the mappers.
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MapReduce The MapReduce Computing Model

Assignment to reducer and mappers

Each mapper task processes a fixed amount of data (split), usually set to
the distributed filesystem block size (e.g., 64MB)

The number of mapper nodes is function of the number of mapper tasks
and the number of available nodes in the cluster: each mapper nodes can
process (in parallel and sequentially) several mapper tasks

Assignment to mapper tries optimizing data locality: the mapper node in
charge of a split is, if possible, one that stores a replica of this split (or if not
possible, a node of the same rack)

The number of reducer tasks is set by the user

Assignment to reducers is done through a hashing of the key, usually
uniformly at random; no data locality possible
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MapReduce The MapReduce Computing Model

Distributed execution of a MapReduce job.
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MapReduce The MapReduce Computing Model

Processing the term count example

Let the input consists of documents, say, one million 100-terms documents of
approximately 1 KB each.

The split operation distributes these documents in groups of 64 MBs: each
group consist of 64,000 documents. Therefore
M = d1,000,000/64,000e ≈ 16,000 groups.

If there are 1,000 mapper node, each node processes on average 16 splits.

If there are 1,000 reducers, each reducer ri processes all key-value pairs for
terms t such that hash(t) = i (1≤ i ≤ 1,000)
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MapReduce The MapReduce Computing Model

Processing the term count example (2)

Assume that hash(’call’) = hash(’mine’) = hash(’blog’) = i = 100. We focus on
three Mappers mp, mq and mr :

1 Gp
i =(<. . . , (’mine’, 1), . . . , (’call’,1), . . . , (’mine’,1), . . . , (’blog’, 1) . . . >

2 Gq
i =(< . . . , (’call’,1), . . . , (’blog’,1), . . . >

3 Gr
i =(<. . . , (’blog’, 1), . . . , (’mine’,1), . . . , (’blog’,1), . . . >

ri reads Gp
i , Gp

i and Gp
i from the three Mappers, sorts their unioned content,

and groups the pairs with a common key:

. . . , (’blog’, <1, 1, 1, 1>), . . . , (’call’, <1, 1>), . . . , (’mine’, <1, 1, 1>)

Our reduce function is then applied by ri to each element of this list. The output
is (’blog’, 4), (’call’, 2) and (’mine’, 3)
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MapReduce The MapReduce Computing Model

Failure management

In case of failure, because the tasks are distributed over hundreds or thousands
of machines, the chances that a problems occurs somewhere are much larger;
starting the job from the beginning is not a valid option.

The Master periodically checks the availability and reachability of the
tasktrackers (heartbeats) and whether map or reduce jobs make any progress

1 if a reducer fails, its task is reassigned to another tasktracker; this usually
require restarting mapper tasks as well (to produce intermediate groups)

2 if a mapper fails, its task is reassigned to another tasktracker
3 if the jobtracker fails, the whole job should be re-initiated

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011 20 / 72



MapReduce The MapReduce Computing Model

Joins in MapReduce

Two datasets, A and B that we need to join for a MapReduce task

If one of the dataset is small, it can be sent over fully to each tasktracker
and exploited inside the map (and possibly reduce) functions

Otherwise, each dataset should be grouped according to the join key, and
the result of the join can be computing in the reduce function

Not very convenient to express in MapReduce. Much easier using Pig.
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MapReduce The MapReduce Computing Model

Using MapReduce for solving a problem

Prefer:
I Simple map and reduce functions
I Mapper tasks processing large data chunks (at least the size of distributed

filesystem blocks)

A given application may have:
I A chain of map functions (input processing, filtering, extraction. . . )
I A sequence of several map-reduce jobs
I No reduce task when everything can be expressed in the map (zero

reducers, or the identity reducer function)

Not the right tool for everything(see further)
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MapReduce MapReduce Optimization

Combiners

A mapper task can produce a large number of pairs with the same key

They need to be sent over the network to the reducer: costly

It is often possible to combine these pairs into a single key-value pair

Example
(jaguar,1), (jaguar, 1), (jaguar, 1), (jaguar, 2)→(jaguar, 5)

combiner : list(V ′)→ V ′ function executed (possibly several times) to
combine the values for a given key, on a mapper node

No guarantee that the combiner is called

Easy case: the combiner is the same as the reduce function. Possible
when the aggregate function α computed by reduce is distributive:
α(k1,α(k2,k3)) = α(k1,k2,k3)

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011 24 / 72



MapReduce MapReduce Optimization

Compression

Data transfers over the network:
I From datanodes to mapper nodes (usually reduced using data locality)
I From mappers to reducers
I From reducers to datanodes to store the final output

Each of these can benefit from data compression

Tradeoff between volume of data transfer and (de)compression time

Usually, compressing map outputs using a fast compressor increases
efficiency
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MapReduce MapReduce Optimization

Optimizing the shuffle operation

Sorting of pairs on each reducer, to compute the groups: costly operation

Sorting much more efficient in memory than on disk

Increasing the amount of memory available for shuffle operations can
greatly increase the performance

. . . at the downside of less memory available for map and reduce tasks
(but usually not much needed)
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MapReduce MapReduce Optimization

Speculative execution

The MapReduce jobtracker tries detecting tasks that take longer than usual
(e.g., because of hardware problems)

When detected, such a task is speculatively executed on another
tasktracker, without killing the existing task

Eventually, when one of the attempts succeeds, the other one is killed
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MapReduce Application: PageRank

PageRank computation

PageRank: importance score for nodes in a graph, used for ranking query
results of Web search engines. Fixpoint computation, as follows:

1 Compute G. Make sure lines sum to 1.
2 Let u be the uniform vector of sum 1, v = u.
3 Repeat N times:

I Set v := (1− d)GT v + du (say, d = 1
4 ).

Exercise
Express PageRank computation as a MapReduce problem. Main program?
map and reduce functions? combiner function?

Illustrate on this graph.

1 2

34
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MapReduce MapReduce in Hadoop

Hadoop

Open-source software, Java-based, managed by the Apache foundation,
for large-scale distributed storage and computing

Originally developed for Apache Nutch (open-source Web search engine),
a part of Apache Lucene (text indexing platform)

Open-source implementation of GFS and Google’s MapReduce

Yahoo!: a main contributor of the development of Hadoop
Hadoop components:

I Hadoop filesystem (HDFS)
I MapReduce
I Pig (data exploration), Hive (data warehousing): higher-level languages for

describing MapReduce applications
I HBase: column-oriented distributed DBMS
I ZooKeeper: coordination service for distributed applications
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MapReduce MapReduce in Hadoop

Hadoop programming interfaces

Different APIs to write Hadoop programs:

I A rich Java API (main way to write Hadoop programs)
I A Streaming API that can be used to write map and reduce functions in any

programming language (using standard inputs and outputs)
I A C++ API (Hadoop Pipes)
I With a higher-language level (e.g., Pig, Hive)

Advanced features only available in the Java API

Two different Java APIs depending on the Hadoop version; presenting the
“old” one
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MapReduce MapReduce in Hadoop

Java map for the term count example

public class TermCountMapper extends MapReduceBase
implements Mapper<Text,Text,Text,IntWritable> {
public void map(
Text uri, Text document,
OutputCollector<Text, IntWritable> output,
Reporter reporter)

{
Pattern p=Pattern.compile("[\\p{L}]+");
Matcher m=p.matcher(document);
while(matcher.find()) {

String term=matcher.group().
output.collect(new Text(term),new IntWritable(1));

}
}

}
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MapReduce MapReduce in Hadoop

Java reduce for the term count example

public class TermCountReducer extends MapReduceBase
implements Reducer<Text,IntWritable,Text,IntWritable> {
public void reduce(
Text term, Iterator<IntWritable> counts,
OutputCollector<Text, IntWritable> output,
Reporter reporter)

{
int sum=0;
while(counts.hasNext()) {

sum+=values.next().get();
}
output.collect(term, new IntWritable(sum));

}
}
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MapReduce MapReduce in Hadoop

Java driver for the term count example
public class TermCount {

public static void main(String args[]) throws IOException {
JobConf conf = new JobConf(TermCount.class);
FileInputFormat.addInputPath(conf, new Path(args[0]));
FileOutputFormat.addOutputPath(conf, new Path(args[1]));

// In a real application, we would have a custom input
// format to fetch URI-document pairs
conf.setInputFormat(KeyValueTextInputFormat.class);

conf.setMapperClass(TermCountMapper.class);
conf.setCombinerClass(TermCountReducer.class);
conf.setReducerClass(TermCountReducer.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
}

}
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MapReduce MapReduce in Hadoop

Testing and executing a Hadoop job

Required environment:
I JDK on client
I JRE on all Hadoop nodes
I Hadoop distribution (HDFS + MapReduce) on client and all Hadoop nodes
I SSH servers on each tasktracker, SSH client on jobtracker (used to control

the execution of tasktrackers)
I An IDE (e.g., Eclipse + plugin) on client

Three different execution modes:

local One mapper, one reducer, run locally from the same JVM as
the client

pseudo-distributed mappers and reducers are launched on a single
machine, but communicate over the network

distributed over a cluster for real runs
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MapReduce MapReduce in Hadoop

Debugging MapReduce

Easiest: debugging in local mode

Web interface with status information about the job

Standard output and error channels saved on each node, accessible
through the Web interface

Counters can be used to track side information across a MapReduce job
(e.g., number of invalid input records)

Remote debugging possible but complicated to set up (impossible to know
in advance where a map or reduce task will be executed)

IsolationRunner allows to run in isolation part of the MapReduce job
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MapReduce MapReduce in Hadoop

Task JVM reuse

By default, each map and reduce task (of a given split) is run in a separate
JVM

When there is a lot of initialization to be done, or when splits are small,
might be useful to reuse JVMs for subsequent tasks

Of course, only works for tasks run on the same node
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MapReduce MapReduce in Hadoop

Hadoop in the cloud

Possibly to set up one’s own Hadoop cluster
But often easier to use clusters in the cloud that support MapReduce:

I Amazon EC2
I Cloudera
I etc.

Not always easy to know the cluster’s configuration (in terms of racks, etc.)
when on the cloud, which hurts data locality in MapReduce

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011 39 / 72



Toward Easier Programming Interfaces: Pig

Outline

1 MapReduce

2 Toward Easier Programming Interfaces: Pig
Basics
Pig operators
From Pig to MapReduce

3 Conclusions

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011 40 / 72



Toward Easier Programming Interfaces: Pig Basics

Outline

1 MapReduce

2 Toward Easier Programming Interfaces: Pig
Basics
Pig operators
From Pig to MapReduce

3 Conclusions

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011 41 / 72



Toward Easier Programming Interfaces: Pig Basics

Pig Latin

Motivation: define high-level languages that use MapReduce as an underlying
data processor.

A Pig Latin statement is an operator that takes a relation as input and produces
another relation as output.

Pig Latin statements are generally organized in the following manner:
1 A LOAD statement reads data from the file system as a relation (list of

tuples).
2 A series of “transformation” statements process the data.
3 A STORE statement writes output to the file system; or, a DUMP

statement displays output to the screen.

Statements are executed as composition of MapReduce jobs.
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Toward Easier Programming Interfaces: Pig Basics

Using Pig

Part of Hadoop, downloadable from the Hadoop Web site

Interactive interface (Grunt) and batch mode

Two execution modes:

local data is read from disk, operations are directly executed, no
MapReduce

MapReduce on top of a MapReduce cluster (pipeline of MapReduce
jobs)
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Toward Easier Programming Interfaces: Pig Basics

Example input data

A flat file, tab-separated, extracted from DBLP.

2005 VLDB J. Model-based approximate querying in sensor networks.
1997 VLDB J. Dictionary-Based Order-Preserving String Compression.
2003 SIGMOD Record Time management for new faculty.
2001 VLDB J. E-Services - Guest editorial.
2003 SIGMOD Record Exposing undergraduate students to database system internals.
1998 VLDB J. Integrating Reliable Memory in Databases.
1996 VLDB J. Query Processing and Optimization in Oracle Rdb
1996 VLDB J. A Complete Temporal Relational Algebra.
1994 SIGMOD Record Data Modelling in the Large.
2002 SIGMOD Record Data Mining: Concepts and Techniques - Book Review.
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Toward Easier Programming Interfaces: Pig Basics

Computing average number of publications per year

-- Load records from the file
articles = load ’journal.txt’

as (year: chararray, journal:chararray,
title: chararray) ;

sr_articles = filter articles
by journal==’SIGMOD Record’;

year_groups = group sr_articles by year;

avg_nb = foreach year_groups
generate group, count(sr_articles.title);

dump avg_nb;
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Toward Easier Programming Interfaces: Pig Basics

The data model

The model allows nesting of bags and tuples. Example: the year_group
temporary bag.

group: 1990
sr_articles:
{
(1990, SIGMOD Record, SQL For Networks of Relations.),
(1990, SIGMOD Record, New Hope on Data Models and Types.)
}

Unlimited nesting, but no references, no constraint of any kind (for parallelization
purposes).
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Toward Easier Programming Interfaces: Pig Basics

Flexible representation

Pig allows the representation of heterogeneous data, in the spirit of
semi-structured dat models (e.g., XML).

The following is a bag with heterogeneous tuples.

{
(2005, {’SIGMOD Record’, ’VLDB J.’},

{’article1’, article2’})
(2003, ’SIGMOD Record’, {’article1’, article2’},

{’author1’, ’author2’})
}
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Toward Easier Programming Interfaces: Pig Pig operators
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Toward Easier Programming Interfaces: Pig Pig operators

Main Pig operators

Operator Description

foreach Apply one or several expression(s) to each of the input tuples
filter Filter the input tuples with some criteria
distinct Remove duplicates from an input
join Join of two inputs
group Regrouping of data
cogroup Associate two related groups from distinct inputs
cross Cross product of two inputs
order Order an input
limit Keep only a fixed number of elements
union Union of two inputs (note: no need to agree on a same schema,

as in SQL)
split Split a relation based on a condition
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Toward Easier Programming Interfaces: Pig Pig operators

Example dataset

A simple flat file with tab-separated fields.

1995 Foundations of Databases Abiteboul
1995 Foundations of Databases Hull
1995 Foundations of Databases Vianu
2010 Web Data Management Abiteboul
2010 Web Data Management Manolescu
2010 Web Data Management Rigaux
2010 Web Data Management Rousset
2010 Web Data Management Senellart

NB: Pig accepts inputs from user-defined function, written in Java – allows to
extract data from any source.
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Toward Easier Programming Interfaces: Pig Pig operators

The group operator

The “program”:

books = load ’webdam-books.txt’
as (year: int, title: chararray, author: chararray) ;

group_auth = group books by title;
authors = foreach group_auth

generate group, books.author;
dump authors;

and the result:

(Foundations of Databases,
{(Abiteboul),(Hull),(Vianu)})

(Web Data Management,
{(Abiteboul),(Manolescu),(Rigaux),(Rousset),(Senellart)})
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Toward Easier Programming Interfaces: Pig Pig operators

Unnesting with flatten

Flatten serves to unnest a nested field.

-- Take the ‘authors’ bag and flatten the nested set
flattened = foreach authors

generate group, flatten(author);

Applied to the previous authors bags, one obtains:

(Foundations of Databases,Abiteboul)
(Foundations of Databases,Hull)
(Foundations of Databases,Vianu)
(Web Data Management,Abiteboul)
(Web Data Management,Manolescu)
(Web Data Management,Rigaux)
(Web Data Management,Rousset)
(Web Data Management,Senellart)
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Toward Easier Programming Interfaces: Pig Pig operators

The cogroup operator

Allows to gather two data sources in nested fields

Example: a file with publishers:

Fundations of Databases Addison-Wesley USA
Fundations of Databases Vuibert France
Web Data Management Cambridge University Press USA

The program:

publishers = load ’webdam-publishers.txt’
as (title: chararray, publisher: chararray) ;

cogrouped = cogroup flattened by group,
publishers by title;
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The result

For each grouped field value, two nested sets, coming from both sources.

(Foundations of Databases,
{ (Foundations of Databases,Abiteboul),

(Foundations of Databases,Hull),
(Foundations of Databases,Vianu)

},
{(Foundations of Databases,Addison-Wesley),
(Foundations of Databases,Vuibert)
}

)

A kind of join? Yes, at least a preliminary step.
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Joins

Same as before, but produces a flat output (cross product of the inner nested
bags). The nested model is usually more elegant and easier to deal with.

-- Take the ’flattened’ bag, join with ’publishers’
joined = join flattened by group, publishers by title;

(Foundations of Databases,Abiteboul,
Fundations of Databases,Addison-Wesley)

(Foundations of Databases,Abiteboul,
Fundations of Databases,Vuibert)

(Foundations of Databases,Hull,
Fundations of Databases,Addison-Wesley)

(Foundations of Databases,Hull,
...
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Plans

A Pig program describes a logical data flow

This is implemented with a physical plan, in terms of grouping or nesting
operations

This is in turn (for MapReduce execution) implemented using a sequence
of map and reduce steps
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Physical operators

Local Rearrange group tuples with the same key, on a local machine

Global Rearrange group tuples with the same key, globally on a cluster

Package construct a nested tuple from tuples that have been grouped

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011 58 / 72



Toward Easier Programming Interfaces: Pig From Pig to MapReduce

Translation of a simple Pig program
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A more complex join-group program
-- Load books, but keep only books from Victor Vianu
books = load ’webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
vianu = filter books by author == ’Vianu’;

publishers = load ’webdam-publishers.txt’
as (title: chararray, publisher: chararray) ;

-- Join on the book title
joined = join vianu by title, publishers by title;

-- Now, group on the author name
grouped = group joined by vianu::author;

-- Finally count the publishers
-- (nb: we should remove duplicates!)
count = foreach grouped

generate group, COUNT(joined.publisher);
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Translation of a join-group program
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Conclusions

MapReduce limitations (1/2)

High latency. Launching a MapReduce job has a high overhead, and
reduce functions are only called after all map functions succeed, not
suitable for applications needing a quick result.

Batch processing only. MapReduce excels at processing a large collection,
not at retrieving individual items from a collection.

Write-once, read-many mode. No real possibility of updating a dataset
using MapReduce, it should be regenerated from scratch

No transactions. No concurrency control at all, completely unsuitable for
transactional applications [PPR+09].
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MapReduce limitations (2/2)

Relatively low-level. Ongoing efforts for more high-level languages:
Scope [CJL+08], Pig [ORS+08, GNC+09], Hive [TSJ+09],
Cascading http://www.cascading.org/

No structure. Implies lack of indexing, difficult to optimize, etc. [DS87]

Hard to tune. Number of reducers? Compression? Memory available at
each node? etc.
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Hybrid systems

Best of both worlds?
I DBMS are good at transactions, point queries, structured data
I MapReduce is good at scalability, batch processing, key-value data

HadoopDB [ABPA+09]: standard relational DBMS at each node of a
cluster, MapReduce allows communication between nodes

Possible to use DBMS inputs natively in Hadoop, but no control about data
locality
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Job Scheduling

Multiple jobs concurrently submitted to the MapReduce jobtracker
Fair scheduling required:

I each submitted job should have some share of the cluster
I prioritization of jobs
I long-standing jobs should not block quick jobs
I fairness with respect to users

Standard Hadoop scheduler: priority queue

Hadoop Fair Scheduler: ensures cluster resources are shared among
users. Preemption (= killing running tasks) possible in case the sharing
becomes unbalnaced.
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What you should remember on distributed computing

MapReduce is a simple model for batch processing of very large collections.
⇒ good for data analytics; not good for point queries (high latency).

The systems brings robustness against failure of a component and transparent
distribution and scalability.
⇒ more expressive languages required (Pig)

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011 67 / 72



Conclusions

Resources

Original description of the MapReduce framework [DG04]

Hadoop distribution and documentation available at
http://hadoop.apache.org/

Documentation for Pig is available at
http://wiki.apache.org/pig/

Excellent textbook on Hadoop [Whi09]

Online MapReduce exercises with validation
http://cloudcomputing.ruc.edu.cn/login/login.jsp
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