
Data Integration

Serge Abiteboul Ioana Manolescu Philippe Rigaux

Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution

http://webdam.inria.fr/textbook

November 17, 2011

WebDam (INRIA) Data Integration November 17, 2011 1 / 58

Introduction

Outline

1 Introduction

2 Logic and databases: brief recall

3 Mediation

4 Global-as-views

5 Local-as-views

WebDam (INRIA) Data Integration November 17, 2011 2 / 58

Introduction

Data Integration

Goal: obtain data from different data sources with a single query/interface

Example:

◮ Sciences: query different databases recording information about genes
◮ Business: query catalogs of different vendors
◮ Administration: integrate financial data from different branches
◮ Web: find data on a person from many Web sources

Complex task: to describe possibly complex connection between data

sources, use semantics

Buzz word: semantic Web

WebDam (INRIA) Data Integration November 17, 2011 3 / 58

Introduction

Semantics: the glue between sources

The data sources:

◮ have been developed independently
◮ are autonomous
◮ very heterogeneous

Semantics is needed to relate their concepts and their structures

Logic is used to describe the semantics

WebDam (INRIA) Data Integration November 17, 2011 4 / 58

Introduction

Example

Where can I see a film of Woody Allen today in Paris?

◮ Woody Allen plays_in a film X
◮ X is_shown_at_theater Y
◮ Y is_located_in Paris

Ignore irrevant sources: Air France, etc.

Find the relevant sources and understand how to use them:

◮ IMDB (Internet Movie Database): movies with lots of information on them;

provides the list of movies by Woody Allen
◮ Allocine: tells where a movie is showing in Paris

Combine their results

WebDam (INRIA) Data Integration November 17, 2011 5 / 58

Introduction

Two main approaches

Ask queries to a global schema

To answer, use data over local schemas

In the two approaches, formulas relate the local schemas to the global

schema

Warehousing approach

◮ Global instance is materialized
◮ Data is transformed from the local instances and loaded in global instance
◮ Queries are evaluated at the global instance

Mediating approach

◮ Global instance is virtual
◮ Queries are evaluated using queries to the local instances

WebDam (INRIA) Data Integration November 17, 2011 6 / 58

Introduction

Views

The integration may be seen as a view of the local databases

A view is a named query that can be re-used in other queries

Example

View1(X,Y1,Y2): Flight(X) ∧ DepartureAirport(X,Y1)

∧ ArrivalAirport(X,Y2)

View2(X,Y): Place(X) ∧ Located(X,Y) ∧ Capital(Y)

Materialized view: computed in advanced and stored

spirit of warehousing

◮ In memory or in a cache
◮ Updates are expensive
◮ Maintenance: propagate updates to update the view

Virtual view: on demand

spirit of mediation

◮ Queries are expensive
◮ The view is recomputed each time it is used

WebDam (INRIA) Data Integration November 17, 2011 7 / 58

Introduction

Data integration in the two approaches

user query against a global schema that integrates

◮ data source 1
◮ data source 2
◮ a data integration system that integrates

⋆ data source 3
⋆ data source 4
⋆ a data integration system that integrates

◮ a data integration system that integrates

⋆ data source 5
⋆ data source 6
⋆ a data integration system that integrates

WebDam (INRIA) Data Integration November 17, 2011 8 / 58

Introduction

Two main approaches: comparison

Warehousing approach

◮ Creation: cost of computation and storage
◮ Query evaluation is very efficient
◮ Updates are costly: need to propagate local instance updates to the

warehouse

Otherwise data are possibly stale

Mediating approach

◮ Creation: no cost
◮ Query: cost of reformulation, possibly recomputation, possibly

communication

typically very redundant unless use of caching
◮ Updates: no cost

Standard tradeoff in databases between updates and queries

WebDam (INRIA) Data Integration November 17, 2011 9 / 58

Introduction

The mediator approach - details

Global schema: Define a mediated schema

◮ Structured vocabulary serving as a query interface for users queries
◮ Typically, one per domain

Local schemas: Declare a data source

◮ Model the content of the source to integrate in terms of the mediated

schema
◮ Relate the concepts/relations of the source to those of the mediated

schema

Query processing

◮ Reformulate and decompose a user’s query over the global schema

into queries over the local schema that are run at the data sources
◮ Combine the answers of local queries to construct the answer to the global

query

WebDam (INRIA) Data Integration November 17, 2011 10 / 58

Introduction

The use of logic and database technology

Define a mediated schema

◮ A database schema
◮ Constraints: first-order-logic formulas

Declare a data source

◮ A source is a database instance
◮ Links with mediated schema: first-order-logic formulas

Queries

◮ Expressed as first-order-logic formulas
◮ Global query evaluation may use a database engine
◮ Each local query evaluation may use a database engine

WebDam (INRIA) Data Integration November 17, 2011 11 / 58

Logic and databases: brief recall

Outline

1 Introduction

2 Logic and databases: brief recall

3 Mediation

4 Global-as-views

5 Local-as-views

WebDam (INRIA) Data Integration November 17, 2011 12 / 58

Logic and databases: brief recall

Logic and databases

Logic provides a unifying framework for

asking queries

specifying the semantics of queries, and

formalizing fundamental problems in this setting

WebDam (INRIA) Data Integration November 17, 2011 13 / 58

Logic and databases: brief recall

Queries

Formulas in first-order logic (FOL)

q(~x): ∃~y Φ(~x ,~y)

~x is a vector of free (distinguished) variables

Φ(~x ,~y) is a formula

◮ its free variables are those of~x and~y
◮ also possibly constants and bound variables

WebDam (INRIA) Data Integration November 17, 2011 14 / 58

Logic and databases: brief recall

Semantics in Description Logic

Given a KB K

◮ K is a set of closed formulas
◮ An ABox that defines a set of facts
◮ A TBox that possibly includes contraints

Answers to a query q (given K)

Ans(q,K) = {~a | K |= q(~a) }

◮ ~a is a vector of constants appearing in K
◮ q(~a): subtitute in ∃ y Φ(x,y) variables in~x by constants in~a
◮ K |= q(~a) if q(~a) holds in all interpretations satisfying K (in all models of K)

WebDam (INRIA) Data Integration November 17, 2011 15 / 58

Logic and databases: brief recall

Static analysis problems in FOL

Satisfiability checking of a formula or a set of formulas

◮ Is the formula satidfiable?
◮ E.g., does there exist of a model?

Implication of a formula by a set of formulas

◮ : ϕ1 ∧ ... ∧ ϕn |= ϕ

◮ Is it true that each model of ϕ1 ..., and ϕn is a model of ϕ?
◮ Can be reduced to satisfiability checking:

{ϕ1, ...,ϕn,¬ϕ} is unsatisfiable

In general, these problems are not decidable (they are recursively

enumerable)

◮ There does not exist an algorithm to decide whether any formula is has a

(finite) model or not
◮ One can enumerate the finite interpretations and if one is a model, one will

find it
◮ Database: finite interpretation; vs. standard logic arbitrary interpretations

WebDam (INRIA) Data Integration November 17, 2011 16 / 58

Logic and databases: brief recall

Static analysis problem: Query containment

Le q1(~x): ∃ ~y1 Φ1(~x ,~y1) and q2(~x): ∃ ~y2 Φ2(~x ,~y2)

q1 ⊆ q2 iff

Ans(q1, I(DB)) ⊆ Ans(q2, I(DB)) for every I(DB)

Another reasoning problem:

∃ ~y1 Φ1(~x ,~y) |= ∃ ~y2 Φ2(~x ,~y2) ?

WebDam (INRIA) Data Integration November 17, 2011 17 / 58

Logic and databases: brief recall

Conjunctive queries

Knowledge base is simply a set of facts: a database

Query: No negation, no disjunction

Conjunctive query example

q(X): ∃A,C Flight(X) ∧ ArrivalAirport(X,A) ∧ Located(A,C) ∧ Capital(C)

In datalog notation:

q(X) ⇐ Flight(X) ∧ ArrivalAirport(X,A) ∧ Located(A,C) ∧ Capital(C)

WebDam (INRIA) Data Integration November 17, 2011 18 / 58

Logic and databases: brief recall

Homomorphism theorem for conjunctive queries

Suppose to simplify that K is a relational database over a single relation R

q is a conjunctive query

K |= q(~a) is true iff there exists a homonorphism µ from q to K

◮ µ is a function over the variables and constants occurring in q
◮ µ is the identity on the constants of K
◮ µ maps variables to constants in K
◮ for each conjunct R(t1,..., tn) in~a, R(µ(t1), ..., µ(tn)) is in K

Query evaluation is

◮ polynomial in the size of the data (data complexity)
◮ NP-complete in the size of the query (program complexity)
◮ Data complexity is what matters (the query is typically much smaller)

WebDam (INRIA) Data Integration November 17, 2011 19 / 58

Logic and databases: brief recall

Homomorphism theorem for containment of conjunctive

queries

q1 ⊆ q2 iff there is a homomorphism from q2 to q1

Algorithm by example

q1(X): R(X,Y), R(Y,Z), R(Z,Z)

q2(X’): R(X’,Y’), R(Y’,Z’1), R(Y,Z’2)

Freeze the variables X, Y, Z - see them as constants, so q1 as an instance

Evaluate q2 on the “instance” q1

If X is an answer

◮ then return q1 ⊆ q2
◮ otherwise return q1 6⊆ q2

On the example: X is an answer and thus q1 ⊆ q2

WebDam (INRIA) Data Integration November 17, 2011 20 / 58

Logic and databases: brief recall

No containment: example

q1(X): R(X,Y), R(Y,Z), R(Z,Z)

q2(X’): R(X’,Y’), R(Y’,Z’1), R(Y’,Z’2)

Is it true that q2 ⊆ q1?

Freezing the variables of q2: X’ , Y’ , Z’1 , Z’2 are distinct constants

Evaluate q1 against the instance q2

◮ Ans(q1, freeze(q2)) = ∅

◮ thus: q2 6⊆ q1

WebDam (INRIA) Data Integration November 17, 2011 21 / 58

Logic and databases: brief recall

Query containment

Conjunctive queries: problem is NP-complete

Central problem for the integration of different data sources

◮ Formulas/queries are used to describe data sources

Other decidable cases:

◮ When the queries are expressible in Description Logics
◮ Query containment = subsumption between two concept descriptions

WebDam (INRIA) Data Integration November 17, 2011 22 / 58

Mediation

Outline

1 Introduction

2 Logic and databases: brief recall

3 Mediation

4 Global-as-views

5 Local-as-views

WebDam (INRIA) Data Integration November 17, 2011 23 / 58

Mediation

Back to the mediator approach

user queries

a mediator system that queries

◮ data source 1
◮ data source 2
◮ data source 3
◮ data source 4

WebDam (INRIA) Data Integration November 17, 2011 24 / 58

Mediation

Mediation: Underlying principles

Define a mediated schema (also called a global schema) that serves for

the query interface for users

Declare the data sources: mappings between the global schema and the

schemas of the local data sources

Two approaches:

◮ Global-As-Views (GAV) approach: the global relations are defined as views

over the local relations
◮ Local-As-Views (LAV) approach: the local relations are defined as views

over the global relations

Query processing

◮ Rewriting the users queries (expressed using global relations) in terms of

local relations ⇒ logical query plans
◮ Combine the answers of logical query plans to obtain the result

WebDam (INRIA) Data Integration November 17, 2011 25 / 58

Mediation

Different semantics for views

Consider a view defined by a query def

v(~x): def(~x ,~y)

Exact semantics

Ext(v) = Ans(def,K)

axiom: ∀~x [v(~x) ⇔ ∃~y def(~x ,~y)] added to K

Sound semantics

Ext(~v) ⊆ Ans(def,K)

axiom: ⇒

complete semantics

Ans(def,K) ⊆ Ext(v)

axiom: ⇐

WebDam (INRIA) Data Integration November 17, 2011 26 / 58

Global-as-views

Outline

1 Introduction

2 Logic and databases: brief recall

3 Mediation

4 Global-as-views

5 Local-as-views

WebDam (INRIA) Data Integration November 17, 2011 27 / 58

Global-as-views

The Global-As-Views approach: example

4 local schemas

S1: a catalogue of teaching programs of (some) French universities

S1.Catalogue(nomUniv, programme)

S2: Erasmus students enrolled in courses of (some) European

universities

S2.Erasmus(student, course, univ)

S3: Foreign students enrolled in programs of (some) French universities

S3.CampusFrance(student, program, university)

S4: the course content of (some) international master programs

S4.Mundus(programTitle,course)

WebDam (INRIA) Data Integration November 17, 2011 28 / 58

Global-as-views

The global instance is a view of the local instances

University (U): S1.Catalogue(U,P) ∨ S2.Erasmus(N,C,U)

∨ S3.CampusFrance(N’,P’,U)

MasterStudent (N): S2.Erasmus(N,C,U), S4.Mundus(P,C)

∨ S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)

MasterCourse (C): S4.Mundus(P,C)

MasterProgram(P): S4.Mundus(P,C)

EnrolledIn (N,P): S2.Erasmus(N,C,U), S4.Mundus(P,C)

∨ S3.CampusFrance(N,P,U’),S4.Mundus(P,C’)

RegisteredTo(N,U): S3.CampusFrance(N,P,U),

WebDam (INRIA) Data Integration November 17, 2011 29 / 58

Global-as-views

Semantics of GAV mappings

MasterStudent (N): S2.Erasmus(N,C,U), S4.Mundus(P,C)

∨ S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)

Exact semantics (typically)

∀ N [(∃C∃U ∃P (S2.Erasmus(N,C,U) ∧ S4.Mundus(P,C))

∨ (∃C’∃U’ ∃P’ (S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)))

⇔ MasterStudent (N)]

Sound semantics

∀ N [(∃C∃U ∃P (S2.Erasmus(N,C,U) ∧ S4.Mundus(P,C))

∨ (∃C’∃U’ ∃P’ (S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)))

⇒ MasterStudent (N)]

WebDam (INRIA) Data Integration November 17, 2011 30 / 58

Global-as-views

Query rewriting by unfolding

The semantics tells how to populate the global relations

A logical query plan for a given query is obtained by unfolding each atom

in the query

This leads to conjunctions of disjunctions

Transform to disjunctions of conjunctions to obtain a set of conjunctive

querie

Example: q(N): MasterStudent(N)

q(N): S2.Erasmus(N,C,U), S4.Mundus(P,C)

∨ S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)

Transform:

q(N): S2.Erasmus(N,C,U), S4.Mundus(P,C)

q(N): S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)

WebDam (INRIA) Data Integration November 17, 2011 31 / 58

Global-as-views

More complex example

Query: q(x): RegisteredTo(s,x), MasterStudent(s)

Conjunctive views

RegisteredTo(N,U): S3.CampusFrance(N,P,U)

MasterStudent (N): S2.Erasmus(N,C,U), S4.Mundus(P,C)

MasterStudent (N): S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)

2 rewritings by unfolding:

(existential variables in the view bodies are replaced by new variables)

u1(x):

S3.CampusFrance(s,v1,x), S2.Erasmus(s,v2,v3),S4.Mundus(v4,v2)

u2(x):

S3.CampusFrance(s,v5,x), S3.CampusFrance(s,v6,v7),

S4.Mundus(v6,v8)

WebDam (INRIA) Data Integration November 17, 2011 32 / 58

Global-as-views

Possibly simplification

Simplification of u2(x):

S3.CampusFrance(s,v5,x), S3.CampusFrance(s,v6,v7),

S4.Mundus(v6,v8)

by unifying the two first atoms into S3.CampusFrance(s,v6,x) with the

substitution s = { v5/v6, v7/x } where v5 and v7 are unbounded existential

variables

⇒ equivalent query expression

Use the Homomorphism theorem for containment of CQ

2 resulting logical query plans:

u1(x):

S3.CampusFrance(s,v1,x), S2.Erasmus(s,v2,v3),S4.Mundus(v4,v2)

u’2(x): S3.CampusFrance(s,v6,x), S4.Mundus(v6,v8)

WebDam (INRIA) Data Integration November 17, 2011 33 / 58

Global-as-views

Results and discussion

The union Q(q,G) of the logical query plans obtained by unfolding the

atoms of a query q using a set G of GAV mappings is complete:

for every instance I of the source relations,

ans(q, G ∪ I) = ∪q∈Q(q,G)ans(q,I)

The evaluation of some query plans may lead to redundant answers or to

no answer at all

◮ It can be known in advance (before their execution) if some additional

knowledge is provided
◮ Example: from the knowledge that the students found in S3.

CampusFrance are non European Students, while those found in

S2.Erasmus are European students, we can infer that the query plan u1

will return an empty set of answers
◮ u1(x): S3.CampusFrance(s,v1,x), S2.Erasmus(s,v2,v3),S4.Mundus(v4,v2)

WebDam (INRIA) Data Integration November 17, 2011 34 / 58

Global-as-views

Main limitation of the GAV approach

Adding or removing data sources requires to revise all the GAV mappings

defining the global schema

When a new data source arrives, we must consider how it may be

combined with all the existing data sources to produce tuples of any

global relation

⇒ The Local-As-Views (LAV) approach

The mediated schema is designed to remain stable even when data

sources join or leave the integration system

Only incremental changes for the sources that join/leave with no impact

on the rest

WebDam (INRIA) Data Integration November 17, 2011 35 / 58

Local-as-views

Outline

1 Introduction

2 Logic and databases: brief recall

3 Mediation

4 Global-as-views

5 Local-as-views

WebDam (INRIA) Data Integration November 17, 2011 36 / 58

Local-as-views

The LAV approach

Starts with a mediated schema, i.e., a set of global relations

Example: Global schema

Student(studentName),..., University(uniName)

Program(title), MasterProgram(title), Course(code)

EnrolledInProgram(studentName,title)

EnrolledInCourse(studentName,code), PartOf(code,title)

RegisteredTo(studentName, uniName)

OfferedBy(title, uniName)

WebDam (INRIA) Data Integration November 17, 2011 37 / 58

Local-as-views

LAV mappings: defines the local relations

Local as views: the local relations are defined as views of the global

relations

Example

◮ S1.Catalogue(U,P):

FrenchUniversity(U), Program(P), OfferedBy(P,U), OffereBy(P’,U),

MasterProgram(P’)
◮ S2.Erasmus(S,C,U):

Student(S), EnrolledInCourse(S,C), PartOf(C,P),

OfferedBy(P,U), EuropeanUniversity(U), RegisteredTo(S,U’)

EuropeanUniversity(U’), U 6=U’
◮ S3. CampusFrance(S,P,U):

NonEuropeanStudent(S), EnrolledInProgram(S,P),

Program(P), Offeredby(P,U), FrenchUniversity(U),

RegisteredTo(S,U)
◮ S4.Mundus(P,C):

MasterProgram(P), OfferedBy(P,U), OfferedBy(P,U’),

EuropeanUniversity(U), NonEuropeanUniversity(U), PartOf(C,P)

WebDam (INRIA) Data Integration November 17, 2011 38 / 58

Local-as-views

Semantics of the LAV mappings

S1.Catalogue(U,P):

FrenchUniversity(U), Program(P), OfferedBy(P,U), OffereBy(P’,U),

MasterProgram(P’)

Sound semantics (typically)

∀U ∀P [S1.Catalogue(U,P)

⇒ ∃ P’ (FrenchUniversity(U), Program(P), OfferedBy(P,U),

OffereBy(P’,U), MasterProgram(P’))]

Exact semantics

∀U ∀P [S1.Catalogue(U,P)

⇔ ∃ P’ (FrenchUniversity(U), Program(P), OfferedBy(P,U),

OffereBy(P’,U), MasterProgram(P’))]

WebDam (INRIA) Data Integration November 17, 2011 39 / 58

Local-as-views

LAV vs. GAV

With GAV: query processing is simple
◮ Building the rewriting in LAV requires more work than the simple unfolding

of the GAV approach

With LAV: more flexibility and robustness

◮ We can define the global schema without knowing the sources
◮ We can define the mapping for one source without knowing the others
◮ Allows a fine-grained description of the data sources, and a loose coupling

between local and global relations
◮ E.g.: if we are interested in Master students, we do not need to know in

advance how to join the available data sources to obtain them like in the

GAV approach ; we just define them as a global query

MasterStudent(S):

Student(S), EnrolledInProgram(S,P), MasterProgram(P)

We will present 3 algorithms

◮ Bucket
◮ Minicon: an optimization of Bucket
◮ Inverse-rules: in the spirit of algorithm for GAV

WebDam (INRIA) Data Integration November 17, 2011 40 / 58

Local-as-views

The Bucket algorithm

Input

◮ A conjunctive query (with comparison predicates) over a global schema
◮ A set of local relations defined as conjunctive views (with comparison

predicates) over the global schema (sound semantics)

output: a set of conjunctive queries over the local relations

WebDam (INRIA) Data Integration November 17, 2011 41 / 58

Local-as-views

Principle: two steps

Create a bucket for each atom g of the query

◮ Store each view atom with an atom in its definition being unifiable with g

(without violating comparison predicates)

Build the set of candidate rewritings

◮ Take one view-atom in each bucket and take their conjunction

For each candidate rewriting, check if its expansion is contained in the

query

◮ If yes: return it in the output
◮ If no: try to add some comparison predicates to satisfy the containment

WebDam (INRIA) Data Integration November 17, 2011 42 / 58

Local-as-views

Creation of the buckets

q(x): RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

RegisteredTo(S,U) in the definition of S3.CampuFrance(S,P,U)

S3. CampusFrance(S,P,U):

NonEuropeanStudent(S), EnrolledInProgram(S,P),

Program(P), Offeredby(P,U), FrenchUniversity(U),

RegisteredTo(S,U)

Bucket(RegisteredTo(s,x)) = { S3.CampusFrance(s, v1,x) }

Observe

s,x are mapped to S,U that are distinguished variables - visible in the local

relation

WebDam (INRIA) Data Integration November 17, 2011 43 / 58

Local-as-views

Creation of the buckets - careful

q(x): RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

S2.Erasmus(S,C,U):

Student(S), EnrolledInCourse(S,C), PartOf(C,P),

OfferedBy(P,U), EuropeanUniversity(U), RegisteredTo(S,U’)

EuropeanUniversity(U’), U 6=U’

RegisteredTo(S,U’) is also in the definition of S2.Erasmus(S,C,U)

But mapping the existential variable U’ in the view definition to the

distinguished variable x in the query is not enough to infer

RegisteredTo(s,x) from S2.Erasmus(s,C,U)

S2.Erasmus(s,C,U) is not added to Bucket(RegisteredTo(s,x))

WebDam (INRIA) Data Integration November 17, 2011 44 / 58

Local-as-views

Combination of the buckets

q(x): RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

Bucket(RegisteredTo(s,x)) = { S3.CampusFrance(s, v1,x) }

Bucket(EnrolledInProgram(s,p)) = {S3.CampusFrance(s, p,v2) }

Bucket(MasterProgram(p)) = {S1.Catalogue(v3,v4), S4.Mundus(p,v5) }

2 candidate rewritings:

r1(x): S3.CampusFrance(s, v1,x), S3.CampusFrance(s, p,v2),

S1.Catalogue(v3,v4)

r2(x): S3.CampusFrance(s, v1,x), S3.CampusFrance(s, p,v2),

S4.Mundus(p,v5)

WebDam (INRIA) Data Integration November 17, 2011 45 / 58

Local-as-views

Complexity

The creation of buckets: O(NxMxV)

where N= size of the query, V= number of views, M = size of the views

N buckets containing each O(MxV) view atoms

The number of candidate rewritings: O((MxV)N)

WebDam (INRIA) Data Integration November 17, 2011 46 / 58

Local-as-views

Verification of each candidate rewriting

q(x): RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

r1(x): S3.CampusFrance(s, v1,x), S3.CampusFrance(s, p,v2),

S1.Catalogue(v3,v4)

r1(x) is a valid rewriting

iff r1(x) together with the LAV mappings logically entail q(x)

iff the expansion of (r1(x)) is contained in q(x)

WebDam (INRIA) Data Integration November 17, 2011 47 / 58

Local-as-views

Verification by expansion and containment checking

q(x): RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

r1(x): S3.CampusFrance(s, v1,x), S3.CampusFrance(s, p,v2),

S1.Catalogue(v3,v4)

Expand(r1(x)): NonEuropeanStudent(s), EnrolledInProgram(s,v1),

Program(v1), Offeredby(v1,x), FrenchUniversity(x),

RegisteredTo(s,x), EnrolledInProgram(s,p),

Program(p), Offeredby(p,v2), FrenchUniversity(v2),

RegisteredTo(s,v2), FrenchUniversity(v3), Program(v4),

OfferedBy(v4,v3), OffereBy(v5,v3), MasterProgram(v5)

Expand(r1(x)) is not contained in q(x) : r1 is not a valid rewriting

WebDam (INRIA) Data Integration November 17, 2011 48 / 58

Local-as-views

Minicon: optimization of Bucket

Containment checking is avoided by a stricter verification of the atoms to

add to the buckets

◮ When the definition of a view V contains an atom g’ such that: σ(g’) = g
◮ If an existential variable Y of g appears in other atoms g1, g2, ..., gk of the

query
◮ If Y’ = σ(Y) is also existential in the view definition

⋆ σ(V) is added to Bucket(g) only if g1, g2, ..., gk are also covered by the

definition of σ(V)

WebDam (INRIA) Data Integration November 17, 2011 49 / 58

Local-as-views

Illustration

V4(X) : cite(X,Y), cite(Y,X)

V5(X,Y) : sameTopic(X,Y)

V6(X,Y) : cite(X,Z) , cite(Z,Y) , sameTopic(X,Z)

Query : Q(U) : cite(U,V) , cite(V,U) , sameTopic(U,V)

Bucket (cite(U,V))?

◮ V4(U) is not added because sameTopic(U,V) is not covered by the

definition of V4(U)
◮ V6 ?

σ(X)=U et σ(Z)=V

Covering of cite(V,U) by the definition of V6(U,Y) ⇒ σ(Y)=U

Covering of sameTopic(U,V) by the definition of s (V6(X,Y))? yes

Bucket(cite(U,V)) = { V6(U,U) }

cover(V6(U,U)) = { cite(U,V), cite(V,U), sameTopic(U,V) }

⇒ r(U): V6(U,U) is a valid rewriting of q(U)

WebDam (INRIA) Data Integration November 17, 2011 50 / 58

Local-as-views

Advantages of Minicon

The rewritings are directly obtained by taking the conjunction of the

view-atoms in the buckets which have pairwise disjoint coverings

Theoretical result: same worst-case complexity as Bucket (exponential in

the size of the query)

Experimental result: scalable when there are many views

WebDam (INRIA) Data Integration November 17, 2011 51 / 58

Local-as-views

The Inverse-rules algorithm

Principle: The LAV mappings are transformed into GAV mappings (called

inverse rules) independently of the query

To do that, we need to introduce existential variables

◮ For the existential variables, we use Skolem terms
◮ This keeps track of their provenance

At query time, the rewritings are obtained by unfolding like in GAV

The unfolding is a little trickier because of the Skolem terms

WebDam (INRIA) Data Integration November 17, 2011 52 / 58

Local-as-views

Inverse rules: introducing Skolem terms

V4(X): cite(X,Y), cite(Y,X)

V5(X,Y): sameTopic(X,Y)

V6(X,Y): cite(X,Z) , cite(Z,Y) , sameTopic(X,Z)

Result of the inversion of the rule:

cite(X,f1(X)): V4(X)

cite(f1(X),X)): V4(X)

sameTopic(X,Y): V5(X,Y)

cite(X,f2(X,Y)): V6(X,Y)

cite(f2(X,Y),X)): V6(X,Y)

sameTopic(X,f2(X,Y)): V6(X,Y)

WebDam (INRIA) Data Integration November 17, 2011 53 / 58

Local-as-views

Query unfolding

q(U): cite(U,V),cite(V,U),sameTopic(U,V)

σ=X/U, V/f1(U) and rule 1.

q’1(U): V4(U),cite(f1(U),U),sameTopic(U,f1(U))

σ=X/U and rule 2.

q’2(U): V4(U), V4(U),sameTopic(U,f1(U)) and rule 3.

σ=X/U, Y/f1(U)

q’3(U): V4(U), V5(U,f1(U))

Recall

1 cite(X,f1(X)): V4(X)
2 cite(f1(X),X)): V4(X)
3 sameTopic(X,Y): V5(X,Y)
4 cite(X,f2(X,Y)): V6(X,Y)
5 cite(f2(X,Y),X)): V6(X,Y)
6 sameTopic(X,f2(X,Y)): V6(X,Y)

WebDam (INRIA) Data Integration November 17, 2011 54 / 58

Local-as-views

Query unfolding - successful example

The evaluation of this query plan will produce no answer:

There is no way to match V5(U,f1(U)) with a fact V5(a,b) in the

data source

WebDam (INRIA) Data Integration November 17, 2011 55 / 58

Local-as-views

Query unfolding (illustration continued)

q(U): cite(U,V),cite(V,U),sameTopic(U,V)

σ={ X/U, V/f2(U,Y) } and rule 4.

q”1(U): V6(U,Y),cite(f2(U,Y),U), sameTopic(U,f2(U,Y))

σ= { X/U, Y/Y } and rule 5.

q”2(U): V6(U,U),V6(U,U),sameTopic(U,f2(U,U))

σ= { X/U, Y/U } and rule 6.

q”3(U): V6(U,U),V6(U,U), V6(U,U)

simplified to: q”4(U): V6(U,U) ⇒ a valid query plan

Recall

1 cite(X,f1(X)): V4(X)
2 cite(f1(X),X)): V4(X)
3 sameTopic(X,Y): V5(X,Y)
4 cite(X,f2(X,Y)): V6(X,Y)
5 cite(f2(X,Y),X)): V6(X,Y)
6 sameTopic(X,f2(X,Y)): V6(X,Y)

WebDam (INRIA) Data Integration November 17, 2011 56 / 58

Local-as-views

Summary

When the queries and the views are (unions of) conjunctive queries over

simple relational schemas, the number of (maximal) conjunctive

rewritings is finite and there are several algorithms to compute them

It is not necessary the case when constraints are added

◮ to the mediated schema
◮ to the views (to express constraints on their access)

WebDam (INRIA) Data Integration November 17, 2011 57 / 58

Local-as-views

DL-Lite (again)

If the constraints on the schema are expressible in DL-Lite

◮ Consistency checking of the views:

⋆ Saturation and translation of the NIs into boolean conjunctive queries
⋆ Application of MiniCon for computing the rewritings of those boolean queries

into views
⋆ Evaluation of those rewritings against the view extensions

◮ Rewriting of the query:

⋆ Reformulation of the query using the PI
⋆ Application of MiniCon for computing the rewritings of each reformulation

The computation of all the answers is not possible when the schema

constraints requires (slight) extensions

◮ The instance recognition (and thus the tuple recognition problem) is

NP-complete in data complexity for slight extensions of DL-Lite

WebDam (INRIA) Data Integration November 17, 2011 58 / 58

	Introduction
	Logic and databases: brief recall
	Mediation
	Global-as-views
	Local-as-views

