
CouchDB
An introduction to CouchDB, a “NoSQL” document database

Serge Abiteboul Ioana Manolescu Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution
http://webdam.inria.fr/textbook

September 23, 2011

WebDam (INRIA) CouchDB September 23, 2011 1 / 21

Basics

What is CouchDB?

A system representative of the “NoSQL” trend.

1 a semi-structured data model, based on JSON;

2 no schema;

3 structured materialized views produced from document collections;

4 views defined with the MAPREDUCE paradigm, allowing both a parallel
computation and incremental maintenance of their content;

5 distributed data management techniques: consistent hashing, support for
data replication and reconciliation, horizontal scalability, parallel
computing, etc.

WebDam (INRIA) CouchDB September 23, 2011 2 / 21

Basics

This presentation

Practice-oriented: the goal is to let you play with CouchDB and discover its
features.

The bluk of the course = a general presentation of the main features of
CouchDB, with focus on the data model and Map/Reduce programming.

Get the datasets from the book web site, and play with the system on-line.

WebDam (INRIA) CouchDB September 23, 2011 3 / 21

Introduction to CouchDB

Data model

JSON: a text format initially designed for serializing Javascript objects ⇒ now

Primary use: data exchange in a Web environment (typ. AJAX applications) –
Extended use: data serialization and storage.

A lightweight XML – prety easy to integrate to any programming language, with
minimal parsing effort.

Downside: no schema (at the moment) – no query language.

WebDam (INRIA) CouchDB September 23, 2011 4 / 21

Introduction to CouchDB

At the core: key-value construct

Basic example:

"title": "The Social network"

Atomic data types: character strings, integers, floating-point number and
Booleans (true or false). Non-string values need not be surrounded by ’"’.

"year": 2010

WebDam (INRIA) CouchDB September 23, 2011 5 / 21

Introduction to CouchDB

Complex values: objects

An object is an unordered set of name/value pairs.

The types can be distinct, and a key can only appear once.

{"last_name": "Fincher", "first_name": "David"}

A object can be used as the (complex) value component of a key-value
construct:

"director": {
"last_name": "Fincher",
"first_name": "David",
"birth_date": 1962

}

WebDam (INRIA) CouchDB September 23, 2011 6 / 21

Introduction to CouchDB

Complex values: arrays

An array is an ordered collection of values that need not be of the same type.

"actors": ["Eisenberg", "Mara", "Garfield", "Timberlake"]

A document is an object. It can be represented with an unbounded nesting of
array and object constructs

{
"title": "The Social network",
"year": "2010",
"director": {"last_name": "Fincher",

"first_name": "David"},
"actors": [

{"first_name": "Jesse", "last_name": "Eisenberg"},
{"first_name": "Rooney", "last_name": "Mara"}

]
}

WebDam (INRIA) CouchDB September 23, 2011 7 / 21

Introduction to CouchDB

CouchDB in a nutshell

A document, web-oriented data system.

Document oriented. Document are complex and autonomous pieces of
information. Can store files, functions, any type of media. But no references.

Typical functionalities of document application: versioning, replication,
synchronization, restructuring.

Web-oriented. A document is a resource in the Web sense – it has a URI, and
can be manipulated via HTTP (REST architecture).

WebDam (INRIA) CouchDB September 23, 2011 8 / 21

Introduction to CouchDB

ApartÃ©: REST principles

A Web-service dialect that enables exchanges of HTTP messages to access,
create, and manage resources.
protocol as follows:

GET retrieves the resource referenced by the URI.

PUT creates the resource at the given URI.

POST sends a message (along with some data) to an existing
resource.

DELETE deletes the resource.

Very convenient in a Web environment: no need to use a client library –
Documents can easily be incorporated in a Web interface.

WebDam (INRIA) CouchDB September 23, 2011 9 / 21

Introduction to CouchDB

A short interactive session
Talk to the server: send an HTTP request, get a response.

$ curl -X GET http://mycouch.org
{"couchdb":"Welcome","version":"1.0.1"}

Create a db = put a resource (the name suffices).

$ curl -X PUT http://mycouch.org/myDB
{"ok":true}

Create a document = put a resource in a db (give the JSON document in the
HTTP request).

$ curl -X PUT http://mycouch.org/myDB/myDoc \
-d ’{"key": "value"}’

{"ok":true,"id":"myDoc","rev":"1-25eca"}

Get the document after its URI:

$ curl -X GET http://mycouch.org/myDB/myDoc
{"_id":"myDoc","_rev":"1-25eca","key":"value"}

WebDam (INRIA) CouchDB September 23, 2011 10 / 21

Introduction to CouchDB

Document management in CouchDB

Each document has an id and a revision number.

Each update to a document creates an new version, with the same _id but a
new revision number.

Validation functions can be assigned to a collection: any document inserted or
updated must be validated by these functions (ad-hoc type-checking).

A view is a new key-document collection, specified via MAPREDUCE.

Documents can be replicated in other CouchDB instances.

WebDam (INRIA) CouchDB September 23, 2011 11 / 21

Introduction to CouchDB

Architecture of CouchDB

WebDam (INRIA) CouchDB September 23, 2011 12 / 21

Overview of data management

Adding data

Get the JSON examples from our site. Documents can always be inserted via
the curl interface.

If you specify the id in the URI: use PUT.

$ curl -X PUT $IP/movies -d @The_Social_Network.json

If the id is part of the document use POST.

$ curl -X POST $IP/movies -d @The_Social_Network.json\
-H "Content-Type: application/json"

Remember: PUT creates a resource; POST sends a message to an existing
resource.

You can also import files from the CouchDB admin web site.

WebDam (INRIA) CouchDB September 23, 2011 13 / 21

Overview of data management

Updating data

Updating in COUCHDB = adding a new version.

COUCHDB applies a Multi-version concurrency control protocol which requires
that you send the version that must be updated:

$ curl -X PUT $IP/movies/tsn?rev=1-db1261 -d @newDoc.json \Alph{}
-H "Content-Type: image/jpg"

{"ok":true,"id":"tsn","rev":"2-26863"}

Deletion is obtained with DELETE.

$ curl -X DELETE $COUCHADDRESS/movies/tsn?rev=2-26863
{"ok":true,"id":"tsn","rev":"3-48e92b"}

A new version has been created! (logical deletion).

WebDam (INRIA) CouchDB September 23, 2011 14 / 21

Overview of data management

Views in COUCHDB

A view is the result of a MAPREDUCE job = a list of (key ,value) pairs.

Views are materialized and indexed on the key by a B+tree.

A MAP function

function(doc)
{

emit(doc.title, doc.director)
}

A REDUCE function

function (key, values) {
return values.length;

}

WebDam (INRIA) CouchDB September 23, 2011 15 / 21

Overview of data management

Accessing views
Here is a view (without reduce function).

function(doc)
{

for (i in doc.actors) {
actor = doc.actors[i];
emit({"fn": actor.first_name, "ln": actor.last_name},

}
}

Save it in the design document named examples, and name the view
actors. The view can be queried with:

$ curl IP/movies/_design/examples/_view/actors
{"total_rows":16,"offset":0,
"rows":[
{"id":"bed7",

"key":{"fn":"Andrew","ln":"Garfield"},"value":"The Social
{"id":"91631b",

"key":{"fn":"Clint","ln":"Eastwood"},"value":"Unforgiven"},
...

WebDam (INRIA) CouchDB September 23, 2011 16 / 21

Overview of data management

Querying views
A view is a B+tree index. So:

function(doc)
{
emit(doc.genre, doc.title) ;

}

is equivalent to

create index on movies (genre);

Recall the B+trees support key and range queries:

$ curl $IP/movies/_design/examples/_view/genre?key=\"Drama\"
{"total_rows":5,"offset":2,"rows":[
{"id":"9163", "key":"Drama","value":"Marie Antoinette"},
{"id":"bed7", "key":"Drama","value":"The Social network"}
]}

For range queries, send the two parameters startkey and endkey.

WebDam (INRIA) CouchDB September 23, 2011 17 / 21

Distribution

The replication primitive

COUCHDB supports natively one-way replication from one instance to another.

curl -X POST $COUCHADDRESS/_replicate \
-d ’{"source": "movies", "target": "backup",

"continuous": true}’ \
-H "Content-Type: application/json"

That’s all: any change in movies is automatically reported in backup.

WebDam (INRIA) CouchDB September 23, 2011 18 / 21

Distribution

Distribution strategies
Combine a proxy that distributes requests, with the replication feature of
COUCHDB.

WebDam (INRIA) CouchDB September 23, 2011 19 / 21

Distribution

How does MVCC works with replication?

WebDam (INRIA) CouchDB September 23, 2011 20 / 21

Exercises

Set up your environment

Create an account using the admin. interface.

Create at least one database, and set this db the default one.

Load the zipmovies.zip and zipartists.zip files in your
database, and look at the imported documents.

Create the views as suggested in the book Chapter.

WebDam (INRIA) CouchDB September 23, 2011 21 / 21

	Basics
	Introduction to CouchDB
	Overview of data management
	Distribution
	Exercises

